Answer:
b) 2.0 mol
Explanation:
Given data:
Number of moles of Ca needed = ?
Number of moles of water present = 4.0 mol
Solution:
Chemical equation:
Ca + 2H₂O → Ca(OH)₂ + H₂
now we will compare the moles of Ca and H₂O .
H₂O : Ca
2 : 1
4.0 : 1/2×4.0 = 2.0 mol
Thus, 2 moles of Ca are needed.
Answer:
See Explanation
Explanation:
What Adi failed to realize is that the oily substance that was obtained from lavender consists of a mixture of substances. It is not only the required fragrance that is present in the extract.
This experiment will not work because those other components in the mixture may be erroneously identified when they show up in the mass spectrum of the extract and may be mistaken for the fragrance in question.
Hence the experiment will not work because; if some kind of separation method is not used to identify other impurities in the oil, many other substances may be mistaken for the actual fragrance.
Answer:
4.1x10⁻⁵
Explanation:
The dissociation of an acid is a reversible reaction, and, because of that, it has an equilibrium constant, Ka. For a generic acid (HA), the dissociation happens by:
HA ⇄ H⁺ + A⁻
So, if x moles of the acid dissociates, x moles of H⁺ and x moles of A⁻ is formed. the percent of dissociation of the acid is:
% = (dissociated/total)*100%
4.4% = (x/[HA])*100%
But x = [A⁻], so:
[A⁻]/[HA] = 0.044
The pH of the acid can be calcualted by the Handersson-Halsebach equation:
pH = pKa + log[A⁻]/[HA]
3.03 = pKa + log 0.044
pKa = 3.03 - log 0.044
pKa = 4.39
pKa = -logKa
logKa = -pKa
Ka = 
Ka = 
Ka = 4.1x10⁻⁵