1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kotykmax [81]
2 years ago
5

Jordan's dad made a new recipe for dinner. Jordan looked at the food and saw that it was white, yellow, and purple in color. She

picked up a few pieces and felt that they were firm. As she moved the pieces to her mouth, she recognized the scent of carrot and black pepper. When she took a bite, she noticed it was salty and sweet.
Which statement best describes how Jordan used her senses to know what ingredients were in the recipe?
Engineering
1 answer:
zhenek [66]2 years ago
7 0

Answer:

Jordan used her eyes to see the food, her touch to feel the food, and her nose to smell the food, and lastly, but most importantly, she used her mouth to taste the food.

You might be interested in
Can you use isentropic efficiency for a non-adiabatic compressor?
vodomira [7]
Mark brainliest please!

Isothermal work will be less than the adiabatic work for any given compression ratio and set of suction conditions. The ratio of isothermal work to the actual work is the isothermal efficiency. Isothermal paths are not typically used in most industrial compressor calculations.

Compressors

Compressors are used to move gases and vapors in situations where large pressure differences are necessary.

Types of Compressor

Compressors are classified by the way they work: dynamic (centrifugal and axial) or reciprocating. Dynamic compressors use a set of rotating blades to add velocity and pressure to fluid. They operate at high speeds and are driven by steam or gas turbines or electric motors. They tend to be smaller and lighter for a given service than reciprocating machines, and hence have lower costs.

Reciprocating compressors use pistons to push gas to a higher pressure. They are common in natural gas gathering and transmission systems, but are less common in process applications. Reciprocating compressors may be used when very large pressure differences must be achieved; however, since they produce a pulsating flow, they may need to have a receiver vessel to dampen the pulses.

The compression ratio, pout over pin, is a key parameter in understanding compressors and blowers. When the compression ratio is below 4 or so, a blower is usually adequate. Higher ratios require a compressor, or multiple compressor stages, be used.

When the pressure of a gas is increased in an adiabatic system, the temperature of the fluid must rise. Since the temperature change is accompanied by a change in the specific volume, the work necessary to compress a unit of fluid also changes. Consequently, many compressors must be accompanied by cooling to reduce the consequences of the adiabatic temperature rise. The coolant may flow through a jacket which surrounds the housing with liquid coolant. When multiple stage compressors are used, intercooler heat exchangers are often used between the stages.

Dynamic Compressors

Gas enters a centrifugal or axial compressor through a suction nozzle and is directed into the first-stage impeller by a set of guide vanes. The blades push the gas forward and into a diffuser section where the gas velocity is slowed and the kinetic energy transferred from the blades is converted to pressure. In a multistage compressor, the gas encounters another set of guide vanes and the compression step is repeated. If necessary, the gas may pass through a cooling loop between stages.

Compressor Work

To evaluate the work requirements of a compressor, start with the mechanical energy balance. In most compressors, kinetic and potential energy changes are small, so velocity and static head terms may be neglected. As with pumps, friction can be lumped into the work term by using an efficiency. Unlike pumps, the fluid cannot be treated as incompressible, so a differential equation is required:

Compressor Work
Evaluation of the integral requires that the compression path be known - - is it adiabatic, isothermal, or polytropic?
uncooled units -- adiabatic, isentropic compression
complete cooling during compression -- isothermal compression
large compressors or incomplete cooling -- polytropic compression
Before calculating a compressor cycle, gas properties (heat capacity ratio, compressibility, molecular weight, etc.) must be determined for the fluid to be compressed. For mixtures, use an appropriate weighted mean value for the specific heats and molecular weight.

Adiabatic, Isentropic Compression

If there is no heat transfer to or from the gas being compressed, the porocess is adiabatic and isentropic. From thermodynamics and the study of compressible flow, you are supposed to recall that an ideal gas compression path depends on:

Adiabatic Path
This can be rearranged to solve for density in terms of one known pressure and substituted into the work equation, which then can be integrated.
Adiabatic Work
The ratio of the isentropic work to the actual work is called the adiabatic efficiency (or isentropic efficiency). The outlet temperature may be calculated from
Adiabatic Temperature Change
Power is found by multiplying the work by the mass flow rate and adjusting for the units and efficiency.
Isothermal Compression

If heat is removed from the gas during compression, an isothermal compression cycle may be achieved. In this case, the work may be calculated from:

http://facstaff.cbu.edu/rprice/lectures/compress.html
4 0
3 years ago
Type the correct answer in the box. Spell all words correctly. Mike is constructing a project in which he uses a motor. How can
tankabanditka [31]
If it is. DC, direct current reverse the polarity of power leads on the motor.

If it is a 3 phase ac alternating current, reverse any of the two of three leads.

Disconnect power before attempting.
6 0
3 years ago
The sum ofall microscopic forms of energy of a system is quantified as flow energy. a)True b) False
Sliva [168]

Answer: b) False

Explanation: Microscopic energy is the the energy that is based on the  molecular level in a particular energy system. Microscopic energy basically comprise with tiny particles like atoms and molecules .The sum of all microscopic form of energy e together make the internal energy .Therefore, the statement given is false because the sum of all the microscopic forms of energy of a system is quantified as internal energy not flow energy.

3 0
3 years ago
True or false. Part of the mission of the NTSB is to determine the probable cause of an accident
eimsori [14]

uniform

welcome 2 Ghana African state western region

6 0
3 years ago
Design process 8 steps with definition​
Troyanec [42]

Answer:

Step 1: Define the Problem.  

Step 2: Do Background Research. .

Step 3: Specify Requirements. .

Step 4: Brainstorm, Evaluate and Choose Solution.  

Step 5: Develop and Prototype Solution.  

Step 6: Test Solution.

Step 7: Does Your Solution Meet the Requirements?  

Step 8: Communicate Results.

can u tell me the definition tho?

palled correctly as “though” which is an alternate form of “although”) at the end is informal usage. It's better placed before “she seems better today

8 0
3 years ago
Other questions:
  • Air enters a compressor operating at steady state with pressure of 90 kPa, at a temperature of 350 K, and a volumetric flow rate
    13·1 answer
  • Which of the following vehicles has no emissions?
    9·1 answer
  • If you were choosing between two strain gauges, one which has a single resistor in a bridge that varies and one that has two res
    11·1 answer
  • Compute the number of kilo- grams of hydrogen that pass per hour through a 6-mm-thick sheet of palladium having an area of 0.25
    12·1 answer
  • Two pressure gauges measure a pressure drop of 16.3 psi (lb/in.2) at the entrance and exit of an old buried pipeline. The origin
    13·1 answer
  • What are the characteristic features of stress corrosion cracks?
    15·1 answer
  • Air expands through a turbine operating at steady state. At the inlet p1 = 150 lbf/in^2, T1 = 1400R and at the exit p2 = 14.8 lb
    10·1 answer
  • Certain pieces made by an acoustic lathe are subject to three kinds of defects X,Y,Z. A sample of 100 pieces was inspected with
    6·1 answer
  • John has just graduated from State University. He owes $35,000 in college loans, but he does not have a job yet. The college loa
    6·1 answer
  • Conduct online research and write a short report on the origin and evolution of the meter as a measurement standard. Discuss how
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!