Answer:
Mass of barium sulfate = 8.17 g
Explanation:
Given data:
Mass of sodium sulfate = 4.98 g
Mass of barium sulfate produced = ?
Solution:
Na₂SO₄ + Ba(NO₃)₂ → BaSO₄ + 2NaNO₃
Moles of sodium sulfate:
Number of moles = mass/molar mass
Number of moles =4.98 g / 142.04 g/mol
Number of moles = 0.035 mol
Now we will compare the moles pf sodium sulfate and with barium sulfate.
Na₂SO₄ : BaSO₄
1 : 1
0.035 : 0.035
Mass of barium sulfate:
Mass = number of moles × molar mass
Mass = 0.035 mol ×233.4 g/mol
Mass = 8.17 g
Answer:
The lithosphere And the upper mantle combines the two crusts, oceanic and continental, with the coolest part of the Crust?. The asthenosphere allows the tectonic plates to slide on the putty substance of the mantle and the mesosphere is the Smallest? part of the mantle. The outer core is hot enough to turn the metal into a Liquid The inner core is the hottest but the extreme pressure makes it a Solid.
Explanation:
Reaction equation showing alpha decay in Uranium-238 is as follows.

It is known that an alpha particle is basically a helium nucleus and it contains 2 protons and 2 neutrons.
Symbol of an alpha particle is
.
As atomic mass or weight is the sum of total number of protons and neutrons present in an atom.
Hence, the atomic weight of the alpha particle is (2 + 2) = 4.
Answer:
441.28 g Oxygen
Explanation:
- The combustion of hydrogen gives water as the product.
- The equation for the reaction is;
2H₂(g) + O₂(g) → 2H₂O(l)
Mass of hydrogen = 55.6 g
Number of moles of hydrogen
Moles = Mass/Molar mass
= 55.6 g ÷ 2.016 g/mol
= 27.8 moles
The mole ratio of Hydrogen to Oxygen is 2:1
Therefore;
Number of moles of oxygen = 27.5794 moles ÷ 2
= 13.790 moles
Mass of oxygen gas will therefore be;
Mass = Number of moles × Molar mass
Molar mass of oxygen gas is 32 g/mol
Mass = 13.790 moles × 32 g/mol
<h3> = 441.28 g</h3><h3>Alternatively:</h3>
Mass of hydrogen + mass of oxygen = Mass of water
Therefore;
Mass of oxygen = Mass of water - mass of hydrogen
= 497 g - 55.6 g
<h3> = 441.4 g </h3>
Answer:

Explanation:
Hello,
In this case, given the described concept regarding the Avogadro's number, we can easily notice that 27.0 g of aluminium foil has 6.022x10²³ atoms as shown below based on the mass-mole-particles relationship:

Notice this is backed up by the fact that aluminium molar mass if 27.0 g/mol.
Best regards.