Answer:
<em>A. 751 ohm</em>
Explanation:
Impedance: <em>This is the total opposition to the flow of current in an a.c circuit by any or all of the three circuit elements ( R, L, C). The unit of impedance is Ohms (Ω). The impedance in a parallel circuit is gives a s</em>
<em>Z = RXₐ/√(Xₐ² + R²)............................... Equation 1</em>
<em>Where Z = The impedance of the a.c circuit, Xₐ = capacitive reactance, R = resistance.</em>
<em>Given: Xₐ = 962 Ω, R = 1200 Ω</em>
<em>Substituting these values into equation 1,</em>
<em>Z = 962×1200/√(962² + 1200²)</em>
<em>Z = 1154400/√(925444 + 1440000)</em>
<em>Z = 1154400/√(925444+1440000</em>
<em>Z = 1154400/1538</em>
<em>Z = 750.59 Ω</em>
<em>Z≈ 751 Ω</em>
<em>Therefore the impedance of the circuit = 751 Ω</em>
<em>The right option is A. 751 ohm</em>
Answer:
Minimum coefficient of kinetic friction between the surface and the block is
.
Explanation:
Given:
Mass of the block = M
Spring constant = k
Distance pulled = x
According to the question:
<em>We have to find the minimum co-efficient of kinetic friction between the surface and the block that will prevent the block from returning to its equilibrium with non-zero speed. </em>
So,
From the FBD we can say that:
⇒ Normal force,
<em>...equation(i)</em>
⇒ Elastic potential energy,
=
<em> ...equation (ii)</em>
⇒ Frictional force,
=
<em> ...equation (iii)</em>
⇒ Plugging (i) in (iii).
⇒
Now,
⇒ As we know that the energy lost due to friction is equivalent to PE .
⇒
<em>...considering PE as</em>
or
.
Arranging the equation.
⇒ 
⇒
<em>...eliminating x from both sides.</em>
⇒
<em>...dividing both sides wit Mg.</em>
Minimum coefficient of kinetic friction between the surface and the block is
.
D. I hope my answer helps you!
Answer:
Ferromagnetic metals Hope this helps :) <3
Explanation: