Answer:
a) ΔGrxn = 6.7 kJ/mol
b) K = 0.066
c) PO2 = 0.16 atm
Explanation:
a) The reaction is:
M₂O₃ = 2M + 3/2O₂
The expression for Gibbs energy is:
ΔGrxn = ∑Gproducts - ∑Greactants
Where
M₂O₃ = -6.7 kJ/mol
M = 0
O₂ = 0

b) To calculate the constant we have the following expression:

Where
ΔGrxn = 6.7 kJ/mol = 6700 J/mol
T = 298 K
R = 8.314 J/mol K

c) The equilibrium pressure of O₂ over M is:

The answer would be 371 because it has multiple complete digits
The empirical formula CH₂O has a mass [(12 × 1) + (1 × 2) + (16 × 1)] = 30 g/mol
If the empirical formula is 30 g/mol,
and the molecular formula is 60 g/mol
Then the multiple is = 60 g/mol ÷ 30 g/mol
= 2
Therefor the molecular formula is 2(CH₂O) = C₂H₄O₂ (OPTION 2)
Answer:
0.665 moles of CO₂
Explanation:
The balance chemical equation for the combustion of Ethane is as follow:
2 C₂H₆ + 7 O₂ → 4 CO₂ + 6 H₂O
Step 1: <u>Calculate moles of C₂H₆ as;</u>
Moles = Mass / M.Mass
Putting values,
Moles = 10.0 g / 30.07 g/mol
Moles = 0.3325 moles
Step 2: <u>Calculate Moles of CO₂ as;</u>
According to balance chemical equation,
2 moles of C₂H₆ produced = 4 moles of CO₂
So,
0.3325 moles of C₂H₆ will produce = X moles of CO₂
Solving for X,
X = 0.3325 mol × 4 mol ÷ 2 mol
X = 0.665 moles of CO₂