Answer:
Q = 913.9 gpm
Explanation:
The Hazen Williams equation can be written as follows:

where,
P = Friction Loss per foot of pipe =
= 4 x 10⁻⁴
Q = Flow Rate in gallon/min (gpm) = ?
d = pipe diameter in inches = (400 mm)(0.0393701 in/1 mm) = 15.75 in
C = roughness coefficient = 100
Therefore,

<u>Q = 913.9 gpm</u>
The correct choice is
B.
Particles at the bottom of the water carry heat energy to the top of the water.
when pot of water is heater, the bottom of pot gets heated. the particles of water in contact with the bottom of the pot gets heat through conduction. after getting heat, these particles of water near the bottom, move away towards top and their position is taken by cooler particles from top. that way heat travels
Answer:

Explanation:
According to the law of conservation of linear momentum, the total momentum of both pucks won't be changed regardless of their interaction if no external forces are acting on the system.
Being
and
the masses of pucks a and b respectively, the initial momentum of the system is

Since b is initially at rest

After the collision and being
and
the respective velocities, the total momentum is

Both momentums are equal, thus
Solving for 


The initial kinetic energy can be found as (provided puck b is at rest)


The final kinetic energy is


The change of kinetic energy is

Options:
universal appeal
flattery
association
bandwagon
Answer: Association
Explanation: Advertisement is a marketing technique through which business organisations utilize the opportunities provided by both the print, electronic and other channels of communication to market a product to the target audience.
Association Advertising is a type of Advertising where certain attributes which have been known to be associated with good and quality products are used to market the products to the target audience.