First we need to find the speed of the dolphin sound wave in the water. We can use the following relationship between frequency and wavelength of a wave:

where
v is the wave speed

its wavelength
f its frequency
Using

and

, we get

We know that the dolphin sound wave takes t=0.42 s to travel to the tuna and back to the dolphin. If we call L the distance between the tuna and the dolphin, the sound wave covers a distance of S=2 L in a time t=0.42 s, so we can write the basic relationship between space, time and velocity for a uniform motion as:

and since we know both v and t, we can find the distance L between the dolphin and the tuna:
Answer:
Propels in the opposite direction
Explanation:
You should trust the primary source more.
This is because the primary source is make its conclusion from direct observation, while the secondary source is possibly making reference to another secondary source or to another primary.
The primary source should be trusted more because it is from direct observation.
The neutrons are inside the nucleus, have no charge, and have mass.
Let's start with an infinitive: it has a form "to..." - only sentences C and D have a phrase like this, so we can exclude other options.
Among those, C does not have a gerund, which is a verbal form: "dreaming" has a function of a noun there.
So the correct answer is the remaining one, D.