<em>1</em><em>.</em><em>259ms^2</em>
Explanation:
since, WORK DONE = FORCE*DISTANCE
AND, FORCE=MASS*ACCELERATION
SO, THE WORK DONE BECOMES=MASS*ACCELERATION*DISTANCE
ACCELERATION=WORK/(MASS*DISTANCE)
AND, WORK=686J
MASS=227kg
DISTANCE=2.4m
THEREFORE, ACCELERATION=686/(227*2.4)
=686/544.8
=1.259ms^2
Answer:
I = 0.483 kgm^2
Explanation:
To know what is the moment of inertia I of the boxer's forearm you use the following formula:
(1)
τ: torque exerted by the forearm
I: moment of inertia
α: angular acceleration = 125 rad/s^2
You calculate the torque by using the information about the force (1.95*10^3 N) and the lever arm (3.1 cm = 0.031m)

Next, you replace this value of τ in the equation (1) and solve for I:

hence, the moment of inertia of the forearm is 0.483 kgm^2
The color of the peak is yellow-green.
Something super duper uper stuper luper nuper tuper zuper yuper fuper guper huper kuper juper wuper special
Answer:
The force will be "9.8 N".
Explanation:
The given values are:
mass,
m = 0.7 kg
M = 2
g = 9.8
Now,
⇒ 
then,
⇒ 
⇒ 
⇒ 
On substituting the values, we get
⇒ 
⇒ 
hence,
⇒ 
On substituting the values, we get
⇒ 
⇒ 
⇒ 
⇒ 