Answer:
0.011 m.
Explanation:
Energy stored in the spring = Energy of the projectile.
1/2ke² = mgh ................ Equation 1
Where k = spring constant, e = extension or compression, m = mass of the projectile, g = acceleration due to gravity, h = height.
make e the subject of the equation
e = √(2mgh/k)............................. Equation 2
Given: k = 12 N/cm = 1200 N/m, m = 15 g = 0.015 kg, h = 5.0 m
Constant: g = 9.8 m/s²
Substitute into equation 2
e = √(2×0.015×5/1200)
e = √(0.15/1200)
e = √(0.000125)
e = 0.011 m.
Answer:
128 m
Explanation:
From the question given above, the following data were obtained:
Horizontal velocity (u) = 40 m/s
Height (h) = 50 m
Acceleration due to gravity (g) = 9.8 m/s²
Horizontal distance (s) =?
Next, we shall determine the time taken for the package to get to the ground.
This can be obtained as follow:
Height (h) = 50 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
50 = ½ × 9.8 × t²
50 = 4.9 × t²
Divide both side by 4.9
t² = 50 / 4.9
t² = 10.2
Take the square root of both side
t = √10.2
t = 3.2 s
Finally, we shall determine where the package lands by calculating the horizontal distance travelled by the package after being dropped from the plane. This can be obtained as follow:
Horizontal velocity (u) = 40 m/s
Time (t) = 3.2 s
Horizontal distance (s) =?
s = ut
s = 40 × 3.2
s = 128 m
Therefore, the package will land at 128 m relative to the plane
The Paleozoic era spanned from the Cambrian to the Permian and ended with a mass extinction at the end of the Permian. Geologists are still unsure of the cause but the theories include a meteorite impact or a massive volcanic event in Siberia or a combination of both. This could be a possible cause of the melting of the late Paleozoic ice sheets.
Answer:
Explanation:
Given
Wavelength of radiation 
We know Energy of wave with wavelength
is given by

where h=Planck's constant
c=velocity of light
=wavelength of wave

Hence the energy of the wave with wavelength 784 m is
Velocidad inicial = 20 m/s
velocidad final = 0 m/s
aceleracion = -2 m/s^2
aceleracion = (cambio de velocidad)/(cambio de tiempo)
(cambio de tiempo)= (cambio de velocidad)/aceleracion
tiempo = (-20 m/s)/(-2 m/s^2)
= 10 segundos
x = (x(inicial)) + (v(inicial))(tiempo) + 1/2(aceleracion)(tiempo)^2
x(inicial) = 0
x = (20 m/s)(10 s) + 1/2 (-2m/s^2)(10 s)^2
x = 200 m - 100 m
x = 100 m (el espacio recorrido en los dos segundos)
espero que esto te ayude! buena suerte!