The energy required to separate a mole of an ionic solid into gaseous ions
Answer:
1) ΔG°r(298 K) = - 28.619 KJ/mol
2) ΔG°r will decrease with decreasing temperature
Explanation:
- CO(g) + H2O(g) → H2(g) + CO2(g)
1) ΔG°r = ∑νiΔG°f,i
⇒ ΔG°r(298 K) = ΔG°CO2(g) + ΔG°H2(g) - ΔG°H2O(g) - ΔG°CO(g)
from literature, T = 298 K:
∴ ΔG°CO2(g) = - 394.359 KJ/mol
∴ ΔG°CO(g) = - 137.152 KJ/mol
∴ ΔG°H2(g) = 0 KJ/mol........pure substance
∴ ΔG°H2O(g) = - 228.588 KJ/mol
⇒ ΔG°r(298 K) = - 394.359 KJ/mol + 0 KJ/mol - ( - 228.588 KJ/mol ) - ( - 137.152 KJ7mol )
⇒ ΔG°r(298 K) = - 28.619 KJ/mol
2) K = e∧(-ΔG°/RT)
∴ R = 8.314 E-3 KJ/K.mol
∴ T = 298 K
⇒ K = e∧(-28.619/(8.314 E-3)(298) = 9.624 E-6
⇒ ΔG°r = - RTLnK
If T (↓) ⇒ ΔG°r (↓)
assuming T = 200 K
⇒ ΔG°r(200 K) = - (8.314 E-3)(200)Ln(9.624E-3)
⇒ ΔG°r (200K) = - 19.207 KJ/mol < ΔG°r(298 K) = - 28.619 KJ/mol
The pressure of the gas in the flask (in atm) when Δh = 5.89 cm is 1.04 atm
<h3>Data obtained from the question</h3>
The following data were obtained from the question:
- Atmospheric pressure (Pa) = 730.1 torr = 730.1 mmHg
- Change in height (Δh) = 5.89 cm
- Pressure due to Δh (PΔh) = 5.89 cmHg = 5.89 × 10 = 58.9 mmHg
- Pressure of gas (P) =?
<h3>How to determine the pressure of the gas</h3>
The pressure of the gas can be obtained as illustrated below:
P = Pa + PΔh
P = 730.1 + 58.9
P = 789 mmHg
Divide by 760 to express in atm
P = 789 / 760
P = 1.04 atm
Thus, the pressure of the gas when Δh = 5.89 cm is 1.04 atm
Learn more about pressure:
brainly.com/question/22523697
#SPJ1
Missing part of question:
See attached photo
Answer:
Option A
Explanation:
Emma creates a pressure difference allowing the fluid to flow