Answer:
maybe the 3rd stance if your not sure try to search in googel
Answer : The final temperature is, 
Explanation :

As we know that,

.................(1)
where,
q = heat absorbed or released
= mass of water at
= 150 g
= mass of water at
= 100 g
= final temperature = ?
= temperature of lead = 
= temperature of water = 
= same (for water)
Now put all the given values in equation (1), we get
![150\times (T_{final}-363)=-[100\times (T_{final}-303)]](https://tex.z-dn.net/?f=150%5Ctimes%20%28T_%7Bfinal%7D-363%29%3D-%5B100%5Ctimes%20%28T_%7Bfinal%7D-303%29%5D)

Therefore, the final temperature is, 
Answer:
shorter
longer
Explanation:
The carbon-carbon bond length in ethylene is <u>shorter</u> than the carbon-carbon bond length in ethane, and the HCH bond angle in ethylene is <u>longer</u> the HCH bond angle in ethane.
The objective of this question is to let us understand the concept of Bond Length and Bond angle among the unsaturated aliphatic hydrocarbons (i.e alkanes, alkenes and alkynes).
The variation in bond angles of unsaturated aliphatic hydrocarbons can be explained by two concepts; The valence shell electron pair repulsion (VSEPR) model and hybridization.
The VSEPR model determines the total number of electron pairs surrounding the central atom of a species. The total number of electron pairs consist of the bond pairs and lone pairs. All the electron pairs( lie charge ) will then orient themselves in such a way to minimize the electrostatic repulsion between them.
As the number of the lone pairs increases from zero to 2 ; the bond angles diminish progressively.
However;
Hybridization is the mixing or blending of two or more pure atomic orbitals (s,p and d) to form two or more hybrid atomic orbitals that are identical in shape and energy . e.g sp, sp² , sp³ hybrid orbitals etc .
The shape of the geometry of this compound hence determines their bond angle.
The shape of the geometry of ethane is tetrahedral which is 109.5° in bond angle while that of ethylene is trigonal planar which is 120°.
This is why the HCH bond angle in ethylene is longer the HCH bond angle in ethane .
The answer is electrolytes. Strong electrolytes like strong acids, strong bases and salts dissociate completely into ions when dissolved and no neutral molecules are present in their solution. Weak electrolytes like weak acids and weak bases do not completely ionize in water and some neutral molecules are present in their solution, while nonelectrolytes do not dissociate into ions when in solution at all.
Answer:
Atoms
Explanation:
Elements are the chemical combinations of two or more atoms of the same kind