Answer:
GDXMZC<XZDFSaYTULRSHYADTGVS
Explanation:
KJ.KHG<DCŞJHJdjhgjöfhds DCSLÇKÖJMNHBGEVCYRWX
Answer:
a) Δp = -2.0 kgm / s, b) Δp = -4 kg m / s
Explanation:
In this exercise the change in moment of a ball is asked in two different cases
a) clay ball, in this case the ball sticks to the door and we have an inelastic collision where the final velocity of the ball is zero
Δp = p_f - p₀
Δp = 0 - m v₀
Δp = - 0.100 20
Δp = -2.0 kgm / s
b) in this case we have a bouncing ball, this is an elastic collision, as the gate is fixed it can be considered an object of infinite mass, therefore the final speed of the ball has the same modulus of the initial velocity, but address would count
v_f = - v₀
Δp = p_f -p₀
Δp = m v_f - m v₀
Δp = m (v_f -v₀)
Δp = 0.100 (-20 - 20)
Δp = -4 kg m / s
Answer:
D. It must have mass and volume
Explanation:
In science, matter is referred to as any substance that has weight and occupies space. This means that the substance must have a MASS of its own when weighed and also a VOLUME.
Matter include elements, molecules, humans, etc. In fact, almost every substance on Earth is considered MATTER. Therefore, the fact that a substance must "have mass and volume" is true for all matter.
Answer:
Acceleration=4m/s²
Force applied =619.8N
Explanation:
Using equation of motion
V=u+at we have: u=o, v=50m/s
50= 0 + a×0.0121
a = 50/0.0121
a= 4m/s²
Neglecting resistance forces
F= ma, where a = v-u/t
F=m×(v-u)/t
F= 0.150 ×(50-0)/0.0121
F=7.5/0.0121
F= 619.8N
B. Chemical reactions must overcome the strong nuclear force