When the applied force increases to 5 N, the magnitude of the block's acceleration is 1.7 m/s².
<h3>
Frictional force between the block and the horizontal surface</h3>
The frictional force between the block and the horizontal surface is determined by applying Newton's law;
∑F = ma
F - Ff = ma
Ff = F - ma
Ff = 4 - 2(1.2)
Ff = 4 - 2.4
Ff = 1.6 N
When the applied force increases to 5 N, the magnitude of the block's acceleration is calculated as follows;
F - Ff = ma
5 - 1.6 = 2a
3.4 = 2a
a = 3.4/2
a = 1.7 m/s²
Thus, when the applied force increases to 5 N, the magnitude of the block's acceleration is 1.7 m/s².
Learn more about frictional force here: brainly.com/question/4618599
Answer:
The force of gravity is not the same as being on the earth. when your on the earth there no gravitational pull its all up to the air
Explanation:
No explanation
Answer:
Use a faster than normal approach and landing speed.
Explanation
For pilots, it is one of the critical moments of the flight that concentrates 12% of fatal accidents. The main difficulty lies in reaching enough speed to take flight within the space of the runway. At present, it ceased to be a challenge for the aircraft, since the engine power improved, so the takeoff ceased to be the most dangerous moment of the flight.
One of the risks that aircraft face today is that some of the engines fail while the plane accelerates. In that case, the pilot must decide in an instant whether it is better to take flight and solve the problem in the air or if it is preferable not to take off.
Although for many staying on the ground might seem the most sensible option, it is not as simple as it seems: to suddenly decelerate an aircraft, with the weight it has and the speed it reaches can cause accidents. However, today a special cement was designed that runs around the runways of the airports, which when coming into contact with the wheels of the aircraft the ground breaks and helps to slow down.
Answer:
A force pump can be used to raise water by a height of more than 10m, the maximum height allowed by atmospheric pressure using a common lift pump.
In a force pump, the upstroke of the piston draws water, through an inlet valve, into the cylinder. On the downstroke, the water is discharged, through an outlet valve, into the outlet pipe.
Answer:
114.86%
Explanation:
In both cases, there is a vertical force equal to the sprinter's weight:
Fy = mg
When running in a circle, there is an additional centripetal force:
Fx = mv²/r
The net force is found with Pythagorean theorem:
F² = Fx² + Fy²
F² = (mv²/r)² + (mg)²
F² = m² ((v²/r)² + g²)
F = m √((v²/r)² + g²)
Compared to just the vertical force:
F / Fy
m √((v²/r)² + g²) / mg
√((v²/r)² + g²) / g
Given v = 12 m/s, r = 26 m, and g = 9.8 m/s²:
√((12²/26)² + 9.8²) / 9.8
1.1486
The force is about 114.86% greater (round as needed).