<span>Thyroid hormones T4, T3
</span><span>Cortisol
</span><span>Estrogen or testosterone
</span><span>Insulinlike growth factor-I (IGF-I)</span>
Percentage recovery gives us an idea of the amount of pure substance recovered after the chemical reaction. Percentage recovery can be more than 100 % or less than 100 %. Usually, in any experiment performed the weight percentage recovery will be less than 100. Percent recovery values greater than 100 show that the recovered compound is contaminated.
Amount of acetaminophen initially taken = 350 mg
Amount of acetaminophen obtained after recovery =185 mg

= 
= 52.9%
Answer:
6 half-lives are required for the concentration of reactant to decrease to 1.56% of its original value.
Explanation:
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given:
Concentration is decreased to 1.56 % which means that 0.0156 of
is decomposed. So,
= 0.0156
Thus,
kt = 4.1604
The expression for the half life is:-
Half life = 15.0 hours
Where, k is rate constant
So,

<u>6 half-lives are required for the concentration of reactant to decrease to 1.56% of its original value.</u>
Answer:
The amount of energy liberated will be 49.38 J.
Explanation:
The amount of energy liberated (gibbs free energy) can be calculated using the following equation:
ΔG° = -nFε
n: amount of moles of electrons transfered
F: Faraday's constant
ε: cell potential
20.0 g of Zn is equal to 0.30 mol.
Two electrons are transfered during the reaction.
Therefore, n = 2x0.30 ∴ n = 0.60
ΔG° = - 0.60 x 96.485 x 0.853
ΔG° = 49.38 J
Answer:
1)Na2O
let the valency of Na is x
2(x)+(2)=0
2x+2=0
2x=-2
x=-1
2)ZnO
let the valency of Zn is x
x+2=0
x=-2
3)Al2O3
let the valency of Al is x
2(x)+3(2)=0
2x+6=0
2x=-6
x=-3
4)MgO
let the valency of Mg is x
x+2=0
x=-2