Answer:
Explanation:
the elements are arranged according to their atomic number - not their relative atomic mass . In the periodic table the elements are arranged into: rows, called periods , in order of increasing atomic number. vertical columns, called groups , where the elements have similar properties
Answer:
more electron deficient
Explanation:
The nitro group is an electron withdrawing group. It withdraws electrons from the pyridine ring by resonance.
This electron withdrawal by resonance makes the pyridine ring less electron rich or more electron deficient.
Hence, the nitro group makes the pyrinde ring more electron deficient
The objects mass I took physical science
Atomic size decreases in a period but the ionization energy and electronegativity increases across a period.
<h3>
Describe the trends in the atomic size, ionization energy and electronegativity?</h3>
Atomic radius decreases across a period because of nuclear charge increases whereas atomic radius of atoms generally increases from top to bottom within a group because there is again an increase in the positive nuclear charge.
Ionization energy increases when we move from left to right across an period and decreases from top to bottom.
Electronegativity also increases from left to right across a period and decreases from top to bottom.
So we can conclude that atomic size decreases in a period but the ionization energy and electronegativity increases across a period.
Learn more about Electronegativity here: brainly.com/question/24977425
#SPJ1
Answer:
301.8 g
Explanation:
We prepare a solution with 200.4 g of water (solvent) and 101.42 g of salt (solute). The mass of the solution is equal to the sum of the mass of the solvent and the mass of the solute.
m(solution) = m(solute) + m(solvent)
m(solution) = 200.4 g + 101.42 g
m(solution) = 301.8 g (we round-off to one decimal according to the significant figures rules)