Answer:
60 g/100 g water
Explanation:
Find 5 °C on the horizontal axis.
Draw a line vertically from that point until you reach the solubility curve for CaCl₂.
Then draw a horizontal line from there to the vertical axis.
The solubility of CaCl₂ is 60 g/100 g water.
Answer:
The heat of reaction when hydrogen and oxygen combine to form water is :
<u>C. 571.6 kJ</u>
Explanation:
Enthalpy Change = The enthalpy change for the formation of 1 mole of the substance from their standard state is called the enthalpy of formation.
This is intensive quantity as it is fixed for 1 mole .
Intensive properties = Those properties which are independent on the amount of the substance are intensive properties.
The value of these quantities does not get halve if you divide the substance into two equal parts. example , density, refractive index.
However , the enthalpy of reaction is extensive. Because on increasing the amount the value of the enthalpy also get doubles
Hence for this reaction :

Its value is -285.8 kJ for 1 mole
And here two moles are present . so the value of molar enthalpy is:
-285.8 x 2 = -571.6 kJ
Answer:
Ke = mgv
Explanation:
(60)(9.81)(2) =1177.2 joules persecond or Watts.
1.177 kilowatts
Answer:
\frac{dh}{dt}_{h=2cm} =\frac{40}{9\pi}\frac{cm}{2}
Explanation:
Hello,
The suitable differential equation for this case is:

As we're looking for the change in height with respect to the time, we need a relationship to achieve such as:

Of course,
.
Now, since the volume of a cone is
and the ratio
or
, the volume becomes:

We proceed to its differentiation:

Then, we compute 

Finally, at h=2:

Best regards.
VII . A because it contains Br (l), Cl (g) and I (s)