Answer:
B. 1500 kg*m/s
Explanation:
Momentum p = m* v
In any type of collision, the total momentum is preserved!
The total momentum before and the total momentum after the collision is the same. We know the mass and speed after the collision so we can calculate the total momentum.
p1 + p2 =
m1*v1 + m2*v2
m1 = me = 300 kg
v1 = 3 m/s
v2 = 2 m/s
Substitute the given numbers:
300*3 + 300+2
900 + 600
1500 kg*m/s, which is answer B.
Answer:
E = 16.464 J
Explanation:
Given that,
Mass of tetherball, m = 0.8 kg
It is hit by a child and rises 2.1 m above the ground, h = 21. m
We need to find the maximum gravitational potential energy of the ball. The formula for the gravitational potential energy is given by :
E = mgh
g is acceleration due to gravity
E = 0.8 kg × 9.8 m/s² × 2.1 m
= 16.464 J
So, the maximum potential energy of the ball is 16.464 J.
In vacuum, going at 2.99×10^8 m/s.
Answer:
B
Explanation:
Two atoms which are isotopes of one another must have a different number of neutrons.
Isotopes are defined as atoms of the same element which have the same numbers of protons i.e. atomic number remains the same, but has different numbers of neutrons. It is observed that they have same chemical properties due to the same electronic configuration but physical properties differs.
Answer:
p = 1.0076 10⁵ Pa
Explanation:
Atmospheric pressure is given by the relation
P = rho g h
In this case they indicate that the height of the column of mercury is h = 756 mm Hg
let's reduce the height to the SI system
h = 756 mm (1m / 1000 mm)
h = 0.756 m
let's calculate
P = 13600 9.8 0.756
p = 1.0076 10⁵ Pa