Answer:
V₂ = 45.53 L
Explanation:
Given data:
Initial temperature = 850 K
Initial volume = 65 L
Initial pressure = 450 KPa
Final temperature = 430 K
Final pressure = 325 KPa
Final volume = ?
Solution:
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 450 KPa× 65 L × 430 K / 850 K × 325KPa
V₂ = 12577500 KPa .L. K / 276250 K. KPa
V₂ = 45.53 L
C. Melting ice.
It is C because melting ice is a change of state from solid to liquid which requires an addition of energy(or entropy) into the system.
Condensation of water occurs from a gas to a liquid state, which takes energy out of the system(water) and gives it to the surroundings(air around it). Freezing water is the same as condensation except for the state change. Deposition is simply gas to a solid instantaneously so you can again see it as with the other two examples.
They seem to eat a lot ranging from woody plants to vines, though in the rainforest most of their diet is made up of Malaysia and plant material, to be more specific
So I would go with leaves, 50%
Flowers, buds, and insects, 10%
Fruits, 40%
--They also really like figs
1.000.000 is the correct answer
2.77mg caffeine / 1oz12oz / 1canLethal dose: 10.0g caffeine = 10,000mg caffeine First, find how much caffeine is in one can of soda, then divide that amount by the lethal dose to find the number of cans. (2.77mg caffeine / 1oz) * (12oz / 1can) = 33.24mg caffeine / 1can. (10,000mg caffeine) * (1can / 33.24mg caffeine) = 300.84 cans. Since we can't buy parts of a can of soda, then we have to round up to 301 cans. Notice how all the values were set up as ratios and how the units cancelled.