Answer:

Explanation:
Hello,
In this case, since the chemical reaction is:

We can see that hydrochloric acid and magnesium hydroxide are in a 2:1 mole ratio, which means that the neutralization point, we can write:

In such a way, the moles of magnesium hydroxide (molar mass 58.3 g/mol) in 500 mg are:

Next, since the pH of hydrochloric acid is 1.25, the concentration of H⁺ as well as the acid (strong acid) is:
![[H^+]=[HCl]=10^{-pH}=10^{-1.25}=0.0562M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D%5BHCl%5D%3D10%5E%7B-pH%7D%3D10%5E%7B-1.25%7D%3D0.0562M)
Then, since the concentration and the volume define the moles, we can write:
![[HCl]*V_{HCl}=2*n_{Mg(OH)_2}](https://tex.z-dn.net/?f=%5BHCl%5D%2AV_%7BHCl%7D%3D2%2An_%7BMg%28OH%29_2%7D)
Therefore, the neutralized volume turns out:

Best regards.
Answer:
The majority of chemical processes are reactions that occur in solution. Important industrial processes often utilize solution chemistry. "Life" is the sum of a series of complex processes occurring in solution. Air, tap water, tincture of iodine, beverages, and household ammonia are common examples of solutions.Turpentine as a solvent are used in the production of paints, inks and dyes. ↔Water as a solvent is used in the making of food, textiles, soaps and detergents. ↔Alloys are solid solutions that are used in the manufacture of cars, aerospace and other vehicles.Household cleaners like bleach are solutions, they help us to make our houses clean. Beverages such as fizzy drinks, mineral water and tea are solutions. In hydroponics, the roots of plants are immersed in solutions containing dissolved mineral salts.
Answer: The molar mass of the gas is 9.878 g/mol.
Explanation:
According to Graham's law, the rate of diffusion is inversely proportional to square root of molar mass of gas.

where,
M = molar mass of gas
As given gas diffuses 1/7 times faster than hydrogen gas. So, its molar mass is calculated as follows.

where,
= molar mass of hydrogen gas
= molar mass of another given gas
= rate of diffusion of hydrogen
= rate of diffusion of another given gas = 
Substitute the values into above formula as follows.

Thus, we can conclude that the molar mass of the gas is 9.878 g/mol.
<span>I'd chose D. In all five years of the study, the control resulted in the least soil erosion as well as substantially less water loss compared to the two treatment situations. </span>