Answer:
- <u>1. Equation: 2x + 3 = 9x - 11</u>
<u></u>
- <u>2. Each row has 2 chairs</u>
Explanation:
The variable x represents the number of chairs in each row.
<u />
<u>1. She can form 2 rows of a given length with 3 chairs left over.</u>
Thus, she has:
number of rows number of chairs in chairs number of chairs
each row left over she has
2 x 3 2x + 3
<u>2. She can form 9 rows of the same length if she gets 11 more chairs.</u>
That means that she is short in 11 chairs to have 9x chairs, or that she has 11 less chairs than 9x chairs. Then she has:
<u>3. Equation:</u>
Then, number of chairs she has is 2x + 3 and, also, 9x - 11, which allows to set the equation:
<u>4. Solve the equation:</u>
Therefore, each row has 2 chairs, and she has 2x + 3 = 4 + 3 = 7 chairs.
This is a straightforward dilution calculation that can be done using the equation
where <em>M</em>₁ and <em>M</em>₂ are the initial and final (or undiluted and diluted) molar concentrations of the solution, respectively, and <em>V</em>₁ and <em>V</em>₂ are the initial and final (or undiluted and diluted) volumes of the solution, respectively.
Here, we have the initial concentration (<em>M</em>₁) and the initial (<em>V</em>₁) and final (<em>V</em>₂) volumes, and we want to find the final concentration (<em>M</em>₂), or the concentration of the solution after dilution. So, we can rearrange our equation to solve for <em>M</em>₂:

Substituting in our values, we get
![\[M_2=\frac{\left ( 50 \text{ mL} \right )\left ( 0.235 \text{ M} \right )}{\left ( 200.0 \text{ mL} \right )}= 0.05875 \text{ M}\].](https://tex.z-dn.net/?f=%5C%5BM_2%3D%5Cfrac%7B%5Cleft%20%28%2050%20%5Ctext%7B%20mL%7D%20%5Cright%20%29%5Cleft%20%28%200.235%20%5Ctext%7B%20M%7D%20%5Cright%20%29%7D%7B%5Cleft%20%28%20200.0%20%5Ctext%7B%20mL%7D%20%5Cright%20%29%7D%3D%200.05875%20%5Ctext%7B%20M%7D%5C%5D.)
So the concentration of the diluted solution is 0.05875 M. You can round that value if necessary according to the appropriate number of sig figs. Note that we don't have to convert our volumes from mL to L since their conversion factors would cancel out anyway; what's important is the ratio of the volumes, which would be the same whether they're presented in milliliters or liters.
Answer:
Prefixes for carbon chain length are
1 carbon = meth
2 carbon = eth
3 = prop
4 = but
5 = pent
6 = hex
7 = hept
8 = oct
9 = non
10 = dec
Explanation:
I believe it's better for it to be more abundant because it's better to have more then less. Take water as an example. Water is an important factor to our survival and if we didn't have enough of that we would be in trouble. Or if we needed food but there wasn't enough more people would be dying from starvation. It's better to have a little more than a little less.
I think the answer is three but i can't be sure.