1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timama [110]
3 years ago
11

Examine a process whereby air at 300 K, 100 kPa is compressed in a piston/cylinder arrangement to 600 kPa. Assume the process is

polytropic with exponent equal to 1.2 or 1.6. Find the work and heat transfer per unit mass of air in each case. Discuss the two cases and how they may be accomplished by insulating the cylinder or by providing heating or cooling.

Engineering
1 answer:
professor190 [17]3 years ago
3 0

Answer:

See attachment and explanation.

Explanation:

- The following question can be solved better with the help of a MATLAB program as follows. The code is given in the attachment.

- The plot of the graph is given in attachment.

- The code covers the entire spectrum of the poly-tropic range ( 1.2 - 1.6 ) and 20 steps ( cases ) have been plotted and compared in the attached plot.

You might be interested in
The period of a pendulum T is assumed to depend only on the mass m, the length of the pendulum `, the acceleration due to gravit
zzz [600]

Answer:

The expression is shown in the explanation below:

Explanation:

Thinking process:

Let the time period of a simple pendulum be given by the expression:

T = \pi \sqrt{\frac{l}{g} }

Let the fundamental units be mass= M, time = t, length = L

Then the equation will be in the form

T = M^{a}l^{b}g^{c}

T = KM^{a}l^{b}g^{c}

where k is the constant of proportionality.

Now putting the dimensional formula:

T = KM^{a}L^{b}  [LT^{-} ^{2}]^{c}

M^{0}L^{0}T^{1} = KM^{a}L^{b+c}

Equating the powers gives:

a = 0

b + c = 0

2c = 1, c = -1/2

b = 1/2

so;

a = 0 , b = 1/2 , c = -1/2

Therefore:

T = KM^{0}l^{\frac{1}{2} } g^{\frac{1}{2} }

T = 2\pi \sqrt{\frac{l}{g} }

where k = 2\pi

8 0
3 years ago
Which alpha-numeric designator, systematically assigned at the time of manufacture, identifies the manufacturer, month, year, lo
Makovka662 [10]

An alpha-numeric designator which is systematically assigned at the time of manufacture, so as to identify the manufacturer, month, year, location, and batch is referred to as lot number.

<h3>What is a product?</h3>

A product can be defined as any physical object (tangible item) that is typically produced by a manufacturer so as to satisfy and meet the demands, needs or wants of every customer. Also, some examples of a product include the following:

  • Refrigerator
  • Television
  • Microwave oven
  • Pencil
  • Smartphone
  • Computer
  • Perfume

<h3>What is lot number?</h3>

A lot number can be defined as an alpha-numeric designator which is systematically designed and assigned at the time of manufacture, so as to identify the manufacturer, month, year, location, and batch.

Read more on products here: brainly.com/question/14308690

#SPJ1

8 0
1 year ago
What is the primary water source for a water cooled recovery unit's condensing coll?
nataly862011 [7]
A) chilled water from evaporator
7 0
3 years ago
A prototype boat is 30 meters long and is designed to cruise at 9 m/s. Its drag is to be simulated by a 0.5-meter-long model pul
Ghella [55]

Answer:

a) 1.16 m/s

b)  1/216000

c)  (√15)/6480000

Explanation:

The parameters given are;

Length of boat prototype, lp = 30 m

Speed of boat prototype = 9 m/s

Length of boat model, lm= 0.5 m

a) lm/lp = 0.5/30 = 1/60 = ∝

(vm/vp) = ∝^(1/2) = √∝ = (1/60)^(1/2)

vm = 9 × (1/60)^(1/2) = 1.16 m/s

b) The ratio of the model to prototype drag, Fm/Fp, is given as follows;

Fm/Fp = (vm/vp)²×(lm/lp)² = ∝³

Fm/Fp = (1/60)³ = 1/216000

c) The ratio of the model to prototype power  pm/p_p = (Fm/Fp) × (vm/vp) = ∝³×√∝

The ratio of the model to prototype power  pm/p_p = √(1/60) × (1/60)³

pm/p_p = √(1/60) × (1/60)³ = (√15)/6480000

6 0
3 years ago
Water enters a centrifugal pump axially at atmospheric pressure at a rate of 0.12 m3
goldenfox [79]

Answer:

Water enters a centrifugal pump axially at atmospheric pressure at a rate of 0.12 m3/s and at a velocity of 7 m/s, and leaves in the normal direction along the pump casing, as shown in Fig. PI3-39. Determine the force acting on the shaft (which is also the force acting on the bearing of the shaft) in the axial direction.

Step-by-step solution:

Step 1 of 5

Given data:-

The velocity of water is .

The water flow rate is.

3 0
3 years ago
Other questions:
  • To ensure safe footing on penetrable surfaces,use?
    5·1 answer
  • What is a construction worker with limited skills called?
    12·1 answer
  • A certain process requires 3.0 cfs of water to be delivered at a pressure of 30 psi. This water comes from a large-diameter supp
    9·1 answer
  • How can the direction of rotation of a split-phase motor be changed? *
    15·2 answers
  • An aggregate blend is composed of 65% coarse aggregate by weight (Sp. Cr. 2.635), 36% fine aggregate (Sp. Gr. 2.710), and 5% fil
    5·1 answer
  • Why might many general contractors begin their careers as construction workers?
    9·1 answer
  • Write down about the water source selection criteria​
    9·1 answer
  • ANSWER QUICK
    15·1 answer
  • If a fuel line is routed through a compartment parallel with an electrical wire bundle, the fuel line should be installed ______
    7·1 answer
  • The A/C compressor will not engage when the A/C is turned on. The static refrigerant pressure is 75 psi and the outside temperat
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!