A torque wrench tool is a tool that ensures that a fastener has the proper amount of tightness.
<h3>What is the torque wrench used for?</h3>
The torque wrench tool is used to ensure screws and bolts are properly tightened. When performing home repairs and maintenance of equipment it is quite important that a torque wrench is used in other to prevent a scenario where a fastener (screws and bolts) does not become loose leading to equipment failure or damage. Because of its many advantages, this tool is often found in the possession of construction workers.
You can learn more about the benefits of a torque wrench tool here
brainly.com/question/15075481
#SPJ1
Answer:
hello your question is incomplete attached below is the missing equation related to the question
answer : 40.389° , 38.987° , 38° , 39.869° , 40.265°
Explanation:
<u>Determine the friction angle at each depth</u>
attached below is the detailed solution
To calculate the vertical stress = depth * unit weight of sand
also inverse of Tan = Tan^-1
also qc is in Mpa while σ0 is in kPa
Friction angle at each depth
2 meters = 40.389°
3.5 meters = 38.987°
5 meters = 38.022°
6.5 meters = 39.869°
8 meters = 40.265°
Given:
Assuming the transition to turbulence for flow over a flat plate happens at a Reynolds number of 5x105, determine the following for air at 300 K and engine oil at 380 K. Assume the free stream velocity is 3 m/s.
To Find:
a. The distance from the leading edge at which the transition will occur.
b. Expressions for the momentum and thermal boundary layer thicknesses as a function of x for a laminar boundary layer
c. Which fluid has a higher heat transfer
Calculation:
The transition from the lamina to turbulent begins when the critical Reynolds
number reaches 



Answer:
5.118 m^3/hr
Explanation:
Given data:
viscosity of cell broth = 5cP
cake resistance = 1*1011 cm/g
dry basis per volume of filtrate = 20 g/liter
Diameter = 8m , Length = 12m
vacuum pressure = 80 kpa
cake formation time = 20 s
cycle time = 60 s
<u>Determine the filtration rate in volumes/hr expected fir the rotary vacuum filter</u>
attached below is a detailed solution of the question
Hence The filtration rate in volumes/hr expected for the rotary vacuum filter
V' = (
) * 1706.0670
= 5118.201 liters ≈ 5.118 m^3/hr