Answer:
Following are the solution to the given question:
Explanation:
The input linear polarisation was shown at an angle of . It's a very popular use of a half-wave plate. In particular, consider the case , at which the angle of rotation is . HWP thereby provides a great way to turn, for instance, a linear polarised light that swings horizontally to polarise vertically. Illustration of action on event circularly polarized light of the half-wave platform. Customarily it is the slow axis of HWP that corresponds to either the rotation. Note that perhaps the vector of polarization is "double-headed," i.e., the electromagnetic current swinging back and forward in time. Therefore the turning angle could be referred to as the rapid axis to reach the same result. Please find the attached file.
Explanation:
We have,
Ajoba and Prav drive to work. Ajoba drives 45 miles in 2.5 hours. Prav drives 74 km in 1 hour 15 min.
1 mile = 1.6 km
45 miles = 72.42 km
74 miles = 119.0 km
1 hour 15 min means 1.25 hours
Average speed of Ajoba is :
Average speed of Prav,
Difference in average speed of Ajoba and Prav is :
So, the difference in average speed of Ajoba and Prav is 66.24 km/h.
Answer:
The capacity for doing work.
Explanation:
It has the forms kinetic, potential, thermal, electric, nuclear or other forms of energy.
The statement that is a quantitative observation is that bird has four different colors on it (option B).
<h3>What is a quantitative research?</h3>
A quantitative research is a systematic scientific investigation of quantitative properties and phenomena and their relationships, using statistical methods.
A quantitative observation has to do with numbers or numeric analysis.
This suggests that the statement that is a quantitative observation is that bird has four different colors on it.
Learn more about quantitative observations at: brainly.com/question/1434538
#SPJ1
The wrong type of lens-Microscope, concave
Explanation:
A microscope Basically uses t<u>wo convex lenses to magnify an object, or specimen.</u>
There are 2 lenses in a microscope
- <u>Object Lens:</u>The lens that is closer to the object
- <u>Eyepiece:</u>The lens that is closer to the eye
Both the object lens and the eyepiece, is a convex lens.