Answer:
C
Explanation:
C. a system that converts thermal energy into other useful forms of energy
Explanation:
It is given that,
A mass oscillates up and down on a vertical spring with an amplitude of 3 cm and a period of 2 s. It is a case of simple harmonic motion. If the amplitude of a wave is T seconds, then the distance cover by that object is 4 times the amplitude.
In 2 seconds, distance covered by the mass is 12 cm.
In 1 seconds, distance covered by the mass is 6 cm
So, in 16 seconds, distance covered by the mass is 96 cm
So, the distance covered by the mass in 16 seconds is 96 cm. Hence, this is the required solution.
Answer:
Δ L = 2.57 x 10⁻⁵ m
Explanation:
given,
cross sectional area = 1.6 m²
Mass of column = 26600 Kg
Elastic modulus, E = 5 x 10¹⁰ N/m²
height = 7.9 m
Weight of the column = 26600 x 9.8
= 260680 N
we know,
Young's modulus=
stress = 
= 
= 162925
strain = 
now,



Δ L = 2.57 x 10⁻⁵ m
The column is shortened by Δ L = 2.57 x 10⁻⁵ m
Answer:
6.0 ×
W/
Explanation:
From Wien's displacement formula;
Q = e A
Where: Q is the quantity of heat transferred, e is the emissivity of the surface, A is the area, and T is the temperature.
The emissive intensity =
= e
Given from the question that: e = 0.6 and T = 1000K, thus;
emissive intensity = 0.6 × 
= 0.6 × 1.0 × 
= 6.0 ×

Therefore, the emissive intensity coming out of the surface is 6.0 ×
W/
.