When the concentrations of CO2 and H2CO3 are both horizontal lines then the rate of the forward reaction is the same as the rate of the reverse reaction.
<h3>What is rate of reaction?</h3>
The term rate of reaction refers to how fast or slow a reaction proceeds. Recall that the rate of reaction is measured from the rate of disappearance of reactants or the rate of appearance of products.
When the [CO2] and [H2CO3 ] are both horizontal lines, the rate of the forward reaction is the same as the rate of the reverse reaction.
Let us recall that the reaction is reversible hence addition of H2CO3 will increase the concentration of H2CO3, the reverse reaction would be favored.
Learn more about rate of reaction: brainly.com/question/8592296
Answer:
C. air pollution absorbs carbon dioxide
Explanation:
Carbon dioxide's role in the greenhouse effect is a major contributor to air pollution. Radiation and heat emanating from the earth's surface need to be released out into the atmosphere. But because carbon dioxide levels are so high, there is an ozone effect on the ground level.
The partial pressure of Hydrogen gas can directly be calculated
by simply taking the difference of the overall pressure and the vapour pressure
of water. That is:
P (H2 gas) = 759.2 torr – 23.8 torr
<span>P (H2 gas) = 735.4 torr</span>
PH = 0.1289<span> for </span>1.50<span> M solution of weak acid with Ka value of </span><span>.73</span>
Answer:
1) When 6.97 grams of sodium(s) react with excess water(l), 56.0 kJ of energy are evolved.
2) When 10.4 grams of carbon monoxide(g) react with excess water(l), 1.04 kJ of energy are absorbed.
Explanation:
1) The following thermochemical equation is for the reaction of sodium(s) with water(l) to form sodium hydroxide(aq) and hydrogen(g).
2 Na(s) + 2H₂O(l) ⇒ 2NaOH(aq) + H₂(g) ΔH = -369 kJ
The enthalpy of the reaction is negative, which means that 369 kJ of energy are evolved per 2 moles of sodium. The energy evolved for 6.97 g of Na (molar mass 22.98 g/mol) is:

2) The following thermochemical equation is for the reaction of carbon monoxide(g) with water(l) to form carbon dioxide(g) and hydrogen(g).
CO(g) + H₂O(l) ⇒ CO₂(g) + H₂(g) ΔH = 2.80 kJ
The enthalpy of the reaction is positive, which means that 2.80 kJ of energy are absorbed per mole of carbon monoxide. The energy evolved for 10.4 g of CO (molar mass 28.01 g/mol) is:
