1.7960L
Explanation:
the mass of the gas is constant in both instances
pv/T=constant(according to pv=nRT)
745mmHg*2L/298K=760mmHg*v/273K
v=1.7960L
Answer:
The sample will be heated to 808.5 Kelvin
Explanation:
Step 1: Data given
Volume before heating = 2.00L
Temperature before heating = 35.0°C = 308 K
Volume after heating = 5.25 L
Pressure is constant
Step 2: Calculate temperature
V1 / T1 = V2 /T2
⇒ V1 = the initial volume = 2.00 L
⇒ T1 = the initial temperature = 308 K
⇒ V2 = the final volume = 5.25 L
⇒ T2 = The final temperature = TO BE DETERMINED
2.00L / 308.0 = 5.25L / T2
T2 = 5.25/(2.00/308.0)
T2 = 808.5 K
The sample will be heated to 808.5 Kelvin
Answer:
83.20 g of Na3PO4
Explanation:
1 mole of Na3PO4 contains 3 moles of Na+.
Mole of Na ion to be prepared = Molarity x volume
= 0.700 x 725/1000
= 0.5075 mole
If 1 mole of Na3PO4 contains 3 moles of Na ion, then 0.5075 Na ion will be contained in:
0.5075/3 x 1 = 0.1692 mole of Na3PO4
mole of Na3PO4 = mass/molar mass = 0.1692
Hence, mass of Na3PO4 = 0.1692 x molar mass
= 0.1692 x 163.94
= 83.20 g.
83.20 g of Na3PO4 will be needed.
Answer:
the difference is tyat eruptions of less gassy and more gassy is that the less gassy doesnt retain as much gas as the more gassy one and thus the eruption of the less gassy is less damage to the more gassy