Since we already have the balanced equation, we know that the ratio between
is
respectively.
So then we can set up a proportion to find the number of moles produced when 2.90 moles of Na react completely:

Then we cross multiply and solve for x:


Therefore, we know that when 2.90 moles of Na react completely, there are 1.45 moles of
that are produced.
Newton’s 2nd law? Maybe I’m not completely sure
So to solve this you need to know Charles’s law which is: V1/T1=V2/T2. Where T1 and V1 is the initial volume and Temperature and V2 and T2 is the temperature and volume afterwards. So first plug in the numbers you are given. V1= 1.55L T1= 32C° V2= 755mL T2=?. Since your volumes are two different units you change 755mL to be in L so that would be 0.755 L. And since your temp isn’t in Kelvin you do 273+32= 305K°. You then would rearrange your equation to solve for T2 which is V2T1/V1. Then you plug in your numbers (0.755L)(305K)/1.55L. Then you solve and would be 148.5645161 —> 1.49 x 10^2 K
Answer:
Depends, but in most cases, 2.
It's best to use as many digits as possible to keep it accurate.
Explanation:
This varies between teachers, as most schools go with 2 decimal places.
This is something that depends in your situation.
You technically want as many decimals as possible to keep it as accurate, but most people stick with 2.
I personally do 3, and commonly do 5 sometimes.
you add the masses of the reactants, because of conservation of mass. if there are two or more products they will ask you to find the mass of only one product or the sum of the mass of all products