The resulting pressure of the gas after decreasing the initial volume from 2 L to 1 L is 3 atm.
<h3>What is
Boyle's Law?</h3>
According to the Boyle's Law at constant temperature, pressure of the gas is inversely proportional to the volume of that gas.
For the given question we use the below equation is:
P₁V₁ = P₂V₂, where
P₁ = initial pressure of gas = 1.5 atm
V₁ = initial volume of gas = 2 L
P₂ = final pressure of gas = ?
V₂ = final volume of gas = 1 L
On putting all these values on the above equation, we get
P₂ = (1.5atm)(2L) / (1L) = 3 atm
Hence required pressure of the gas is 3 atm.
To know more about Boyle's Law, visit the below link:
brainly.com/question/469270
Yeah of-course!! It's valency by group most of the chemical property like electronegativity, ionization energy etc. by the combination of groups and periods...
The number of moles in each sample will be 0.391 moles, 30.7 moles, 0.456 moles, and 1350 moles
<h3>What is the number of moles?</h3>
The number of moles of a substance is the ratio of the mass of the substance to the molar mass.
In other words; mole = mass/molar mass.
Thus:
- moles of 18.0 g
= 18.0/46
= 0.391 moles
- moles of 1.35 kg
= 1350/44
= 30.7 moles
- moles of 46.1 g
= 46.1/101.1
= 0.456 moles
- moles of 191.8 kg
= 191800/142
= 1350 moles
More on the number of moles of substances can be found here: brainly.com/question/1445383
#SPJ1
Answer:
The correct answer is vertebrate enzyme hydrolyze alpha-1,4 glycosidic linkage but not glucose in the beta configuration.
Explanation:
The amylase that is present inside human body is called salivary alpha amylase,an enzyme that digest the alpha-1,4-glycosidic linkages of starch but does not act on those glycosidic linkages which are present in beta configuration.
Cellulose contain beta-1,4-glycosidic linkages.That"s why it is not digested by the alpha amylase enzyme present inside the human body basically present in the saliva.
<span>C4H4
The compound in question has an equal ratio of hydrogen and carbon. The atomic weight of carbon is roughly 12 and the atomic weight of hydrogen is roughly 1. The mass of the compound in question is roughly 52.
52/13=4
C4H4</span>