This is because solids have less energy than liquids do, hence it takes more energy to excite a solid into its gaseous phase than it does a liquid.
When opposed to merely reducing their separation, from solid to liquid, the energy needed to totally separate the molecules as they move from liquid to gas is substantially higher. The latent heat of vaporization is therefore bigger than the latent heat of fusion for this reason.
<h3>
What is heat of sublimation?</h3>
The amount of energy required to change one mole of a substance from its solid to its gaseous state under particular conditions—typically the standard ones—is known as the enthalpy of sublimation or heat of sublimation (STP). A solid's worth is based on its cohesive energy.
<h3>
What is heat of vaporization?</h3>
The term "enthalpy of vaporization," which is often referred to as "heat of vaporization" or "heat of evaporation," refers to the amount of energy that must be applied to a liquid substance in order to cause a part of that substance to transform into a gas. Vaporization's enthalpy varies with the pressure at which the transition takes place.
Learn more about heat of sublimation: brainly.com/question/13200793
#SPJ4
The correct question is:
Why heat of the sublimation of a substance is greater than the heat of vaporization?
The part of the amino acid which helps to identify features that differentiate one amino acid from another is the SIDE CHAIN OF EACH AMINO ACID.
Amino acids are made up of five basic parts, these are:
1. A central carbon atom
2. A hydrogen atom
3. An amino group
4. A carboxyl group and
5. A R group, also known as a side chain.
The side chain distinguishes one amino acid from the other; different amino acids have different side chains.
Answer:
Lithium will lose about 2 electrons
Making it a cation
Answer : The time passed in years is 
Explanation :
Half-life of carbon-14 = 5730 years
First we have to calculate the rate constant, we use the formula :



Now we have to calculate the time passed.
Expression for rate law for first order kinetics is given by:

where,
k = rate constant = 
t = time passed by the sample = ?
a = initial amount of the reactant disintegrate = 15.3
a - x = amount left after decay process = 14.8
Now put all the given values in above equation, we get


Therefore, the time passed in years is 