1.75 moles or 1.8 moles if you’re rounding in terms of sig figs
Answer: Option (c) is the correct answer.
Explanation:
A limiting reagent is defined as a reagent that completely gets consumed in a chemical reaction. A limiting reagent limits the formation of products.
For example, we have given 5 mol of A and the reaction is 
Whereas when 4 mol B will react with 2 mol of A. Hence, 8 mol of B will react with 4 mol A as follows.
= 4 mol
As, the given moles of A is more than the required moles. Thus, it is considered as an excess reagent.
Hence, B is a limiting reagent because it limits the formation of products.
Thus, we can conclude that limiting reactant is the term used to describe the reactant that is used up completely and controls the amount of product that can be produced during a chemical reaction.
For the purpose we will here use the ideal gas law:
p×V=n×R×T
V= ?
n = 0.5 moleT= 273.15 K (at STP)
p= 101.325 kPa (at STP)
R is universal gas constant, and its value is 8.314 J/mol×K
Now when we have all necessary date we can calculate the number of moles:
V=nxRxT/p
V=0.5x8.314x273.15/101.325= 11.2 L = 11200 mL
Answer: D.
Answer:
2H₂ + O₂ → 2H₂O
Explanation:
The expression of the equation is given as:
_H₂ + 2O₂ → 2H₂O
Now for expression above,
Reactants Products
H 2 4
O 4 2
to balance the equation, we use 2 moles of hydrogen gas and 1 mole of oxygen gas;
2H₂ + O₂ → 2H₂O
A) Potassium
Potassium contains the six chemical elements that make it an alkali metal?