Answer:
Most stars are rather simple things. They come in a variety of sizes and temperatures, but the great majority can be characterized by just two parameters: their mass and their age. (Chemical composition also has some effect, but not enough to change the overall picture of what we will be discussing here. All stars are about three-quarters hydrogen and one-quarter helium when they are born.)
Answer:
Explanation:
a )
m = m₀ 
m is mass after time t . original mass is m₀ , λ is disintegration constant
λ = .693 / half life
= .693 / 1590
= .0004358
m = m₀ 
b )
m = 50 x 
= 40.21 mg .
c )
40 = 50 
.8 = 
= 1.25
.0004358 t = .22314
t = 512 years .
Answer : The metal used was iron (the specific heat capacity is
).
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of unknown metal = ?
= specific heat of water = 
= mass of unknown metal = 150 g
= mass of water = 200 g
= final temperature of water = 
= initial temperature of unknown metal = 
= initial temperature of water = 
Now put all the given values in the above formula, we get


Form the value of specific heat of unknown metal, we conclude that the metal used in this was iron (Fe).
Therefore, the metal used was iron (the specific heat capacity is
).
(2) They tend to lose electrons easily when bonding is the correct answer.
All metals have either one, two, or three valence electrons. Therefore, they tend to lose these valence electrons in order to have eight valence electrons like noble gases do.
Hope this helps~
I believe <span>Na2SO3 is the solution to the problem.</span>