Answer:

Explanation:
Hello,
In this case, the undergoing chemical reaction is:

Thus, for 0.904 g of precipitate, that is lead (II) iodide, we can compute the initial moles of lead (II) ions in lead (II) nitrate:

Finally, the resulting molarity in 30.8 mL (0.0308 L):

Regards.
Answer:
C.0.28 V
Explanation:
Using the standard cell potential we can find the standard cell potential for a voltaic cell as follows:
The most positive potential is the potential that will be more easily reduced. The other reaction will be the oxidized one. That means for the reactions:
Cu²⁺ + 2e⁻ → Cu E° = 0.52V
Ag⁺ + 1e⁻ → Ag E° = 0.80V
As the Cu will be oxidized:
Cu → Cu²⁺ + 2e⁻
The cell potential is:
E°Cell = E°cathode(reduced) - E°cathode(oxidized)
E°cell = 0.80V - (0.52V)
E°cell = 1.32V
Right answer is:
<h3>C.0.28 V
</h3>
<h3 />
Answer:
I would recommend them becoming an Analytical Chemist because Analytical Chemists examine and identify various elements and compounds to find out the composition, structure, and nature of substances and they determine the concentration of chemical pollutants in soil, water,and air. I would recommend taking inorganic, organic, analytical, and physical chemistry as well as computer science, physics, and environmental science
The standard enthalpy of formation for chlorine is zero but the standard entropy is larger than 0 because it is the elemental state of chlorine.
The standard enthalpy of formation for chlorine is zero because cl2 is the elemental state of chlorine and it does not require any energy for the formation of the standard state of chlorine.
The entropy of any system cannot be negative. It can only be positive or zero.
The entropy of a system will become zero only at a absolute zero temperature.
That's why the entropy of chlorine in elemental state is more than zero because absolutely zero temperature can't be obtained.
To know more about entropy, visit,
brainly.com/question/6364271
#SPJ4
Answer:
Kc = [CO2], that is to say it is equal to the concentration of CO2
Explanation:
It is a heterogeneous equilibrium since the substances that participate in the reaction are in different phases
In the heterogeneous limestone decomposition reaction:
CaCO3(s) --> CaO(s) + CO2(g)
The equilibrium constants are:
Kc = [CO2(g)]; Kp = PCO2(g); Kc = Kp (R T)^
−(1−0) = Kp (R T)^
−1
The equilibrium situation is not affected by the amount of solid or liquid, as long as these substances are present.
The equilibrium constant is independent of the amounts of solids and liquids in equilibrium.