Answer:
The two objects are traveling at the same speed.
Explanation:
Neglecting air resistance, an object that is thrown up from the top of a tall building has the same speed as the second object thrown down from the top of the same tall building since the initial speed is the same.
The object thrown up is not traveling faster neither is the object thrown down traveling faster.
Therefore, the two objects will have the same speed when they hit the ground but their time of landing might be different.
Answer:
here we can say that acceleration of the satellite is same as the gravitational field due to Earth at that location
Explanation:
As we know that gravitational field is defined as the force experienced by the satellite per unit of mass
so we will have

now in order to find the acceleration of the satellite we know by Newton's II law

so we will have

so here we can say that acceleration of the satellite is same as the gravitational field due to Earth at that location
Potential energy increases as speed decreases. Kinetic increases when speed increases.
Answer:
Weather is the conditions (temperature, wind etc.) at a given time, like on that day. Climate, which is what his data would show, is the conditions over an extended period of time like the 3 months he collected data
The energy carried by the incident light is

where h is the Planck constant and f is the frequency of the light. The threshold frequency is the frequency that corresponds to the minimum energy needed to eject the electrons from the metal, so if we substitute the threshold frequency in the formula, we get the minimum energy the light must have to eject the electrons: