Answer:
1) 0.009 61 g C; 2) 0.008 00 mol C
Step-by-step explanation:
You know that you will need a balanced equation with masses, moles, and molar masses, so gather all the information in one place.
M_r: 12.01 44.01
C + ½O₂ ⟶ CO₂
m/g: 0.352
1) <em>Mass of C
</em>
Convert grams of CO₂ to grams of C
44.01 g CO₂ = 12.01 g C
Mass of C = 0.352 g CO₂ × 12.01 g C/44.01 g CO₂
Mass of C = 0.009 61 g C
2) <em>Moles of C
</em>
Convert mass of C to moles of C.
1 mol C = 12.01 g C
Moles of C = 0.00961 g C × (1 mol C/12.01 g C)
Moles of C = 0.008 00 mol C
All the carbon comes from Compound A, so there are 0.008 00 mol C in Compound A.
Answer:
volcanic eruption.
mark my answer as brainlest......
Answer:
In order to determine the rate at which the sediment layers were deposited
Explanation:
Iridium is an important element that belongs to the Platinum group and they are dominantly present in the asteroids and comets. They are the key evidence that suggests the occurrence of an asteroidal impact or a mass extinction event that has taken place in the geological past.
The presence of Iridium mixed with the clay sediments in the boundary between the Cretaceous and Tertiary (K-T boundary) suggested the mass extinction event that wiped out numerous life forms from the earth.
The famous scientist Dr. Luis Walter Alvarez suggested measuring the concentration of Iridium in this K-T boundary in order to determine the rate at which these sediment layers were deposited. They were able to determine that these Iridium elements were present due to the asteroid impact on earth, that wiped out the dinosaurs from the earth. They also considered that this element can be produced from the eruptions of volcanoes.
The correct answer is C: Calcium carbonate in water is a solution
The reaction of Mg Cl2 and KOH can be described as a double substitution type of reaction. This means the cations of the reactants are exchanged in places when the products are formed. In this case, the balanced reaction is expressed
MgCl2 (s) + 2KOH (aq) = Mhg (OH)2 (aq) + 2KCl (s)