Answer:
In Step 5, you will calculate H+/OH– ratios for more extreme pH solutions. Find the concentration of H+ ions to OH– ions listed in Table B of your Student Guide for a solution at a pH = 2. Then divide the H+ concentration by the OH– concentration. Record these concentrations and ratio in Table C.
What is the concentration of H+ ions at a pH = 2?
0.01 mol/L
What is the concentration of OH– ions at a pH = 2?
0.000000000001 mol/L
What is the ratio of H+ ions to OH– ions at a pH = 2?
10,000,000,000 : 1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
I LITERALLY spent 40 MINUTES trying to figure out this question, so please, use my VERY CORRECT answers!
I hope this helps!
Answer:
, repulsive
Explanation:
The magnitude of the electric force between two charged particles is given by Coulomb's law:
where:
is the Coulomb's constant
are the two charges of the two particles
r is the separation between the two charges
The force is:
- repulsive if the two charges have same sign
- Attractive if the two charges have opposite signs
In this problem, we have two electrons, so:
is the magnitude of the two electrons
is their separation
Substituting into the formula, we find the electric force between them:

And the force is repulsive, since the two electrons have same sign charge.
Answer: 37.5 nm
Explanation: speed of light c= 3.00·10^8 m/s.
I use same accuracy to speed of light as it's for frequency.
Frequency f= 8.01·10^15 1/s
Speed c = wavelength · frequency
Wavelength = c/f = 3.745·10^-8 m
The answer is 0.025J.
W=1/2*k*x^2
W=1/2*20*0.050^2
W=0.025J