Explanation:
hopefully that makes sense. the position doesn't change over the 5 seconds, meaning it's stopped but time still continues. then when the slope is negative this shows the bear's position becoming negative (backing up, changing direction).
Answer:
The pressure is 
Explanation:
From the question we are told that
The initial pressure is 
The temperature is 
Let the first volume be
Then the final volume will be 
Generally for a diatomic gas

Here r is the radius of the molecules which is mathematically represented as

Where
are the molar specific heat of a gas at constant pressure and the molar specific heat of a gas at constant volume with values

=> 
=> 
=> ![P_2 = [\frac{1}{2} ]^{\frac{7}{5} } * 11.2](https://tex.z-dn.net/?f=P_2%20%20%3D%20%20%5B%5Cfrac%7B1%7D%7B2%7D%20%5D%5E%7B%5Cfrac%7B7%7D%7B5%7D%20%7D%20%2A%2011.2)
=> 
Originally there must been
1,4775E6 + 2.25E4 = 147.75E4 + 2.25E4 = 150E4 present at start
% = 2.25 / 150 = 1.5 % of 235 U left
When an object is falling and reaches a constant velocity, the net force on the object is <em>zero</em> (it's not accelerating), and the weight of the object is equal to <em>the force of air resistance against the object</em>. (choice-D)
Answer:
Gravity, Weak, Electromagnetic and Strong.