Nope.
False.
The shift in spectral lines reveals only 'radial' motion ...
motion toward us or away from us. The spectrum
carries no information related to motion across the
line of sight.
Answer:
(a) 42 N
(b)36.7 N
Explanation:
Nomenclature
F= force test line (N)
W : fish weight (N)
Problem development
(a) Calculating of weight of the heaviest fish that can be pulled up vertically, when the line is reeled in at constant speed
We apply Newton's first law of equlibrio because the system moves at constant speed:
∑Fy =0
F-W= 0
42N -W =0
W = 42N
(b) Calculating of weight of the heaviest fish that can be pulled up vertically, when the line is reeled with an acceleration whose magnitude is 1.41 m/s²
We apply Newton's second law because the system moves at constant acceleration:
m= W/g , m= W/9.8 , m:fish mass , W: fish weight g:acceleration due to gravity
∑Fy =m*a
m= W/g , m= W/9.8 , m:fish mass , W: fish weight g:acceleration due to gravity
F-W= ( W/9.8 )*a
42-W= ( W/9.8 )*1.41
42= W+0.1439W
42=1.1439W
W= 42/1.1439
W= 36.7 N
Hey there,
Question : Which microbes can be Eukaryotic?
Answer : A, Bacteria
Hope this helps :D
<em>~Top♥</em>
Answer:
-67,500 kgm/s
Explanation:
1300 * 20 + 1100 * (-85) = -67,500 kgm/s
Answer:
f = 6.37 Hz, T = 0.157 s
Explanation:
The expression you have is
y = 5 sin (3x - 40t)
this is the equation of a traveling wave, the general form of the expression is
y = A sin (kx - wt)
where A is the amplitude of the motion, k the wave vector and w the angular velocity
Angle velocity and frequency are related
w = 2π f
f = w / 2π
from the equation w = 40 rad / s
f = 40 / 2π
f = 6.37 Hz
frequency and period are related
f = 1 / T
T = 1 / f
T = 1 / 6.37
T = 0.157 s