Answer:
Butan-2-one
Explanation:
1. 1700 cm⁻¹
A strong peak near 1700 cm⁻¹ is almost certainly a carbonyl (C=O) group.
2. Triplet-quartet
A triplet-quartet pattern indicates an ethyl group.
The 2H quartet is a CH₂ adjacent to a CH₃. The peak normally occurs at δ 1.3, but it is shifted 1.2 ppm downfield to δ 2.47 by an adjacent C=O group.
The 3H triplet at δ 1.05 is the methyl group. It, too, is shifted downfield from its normal position at δ 0.9. The effect is smaller, because the methyl group is further from the carbonyl.
3. 3H(s) at δ 2.13
This indicates a CH₃ group with no adjacent hydrogen atoms.
It is shifted 0.8 ppm downfield to δ 2.13 by the adjacent C=O group.
4. Identification
The identified pieces are CH₃CH₂-, -(CO)-, and -CH₃. There is only one way to put them together: CH₃CH₂-(C=O)-CH₃.
The compound is butan-2-one.
<span>the table say that at 20 degree celcius 88.0g of NANO3 will remain dissolved in
100 gm of H2O
so at 20 degree celcius 80.0g of H20 will dissolve
(88.0g)x(80g/100g)=70.4g of NANO3
so at 20 degree celcius
86.3g-70.4g= 15.9 gram of NANO3 will come out of solution.</span>
Correct answer is <span>X = ΔH
Reason:
1) The graph of enthalpy Vs reaction coordinate suggest the reaction is endothermic in nature. For endothermic reaction, energy if product is more than that of reactant. Hence, option 1 i.e. </span><span>X = -ΔH cannot be correct.
2) Since the reaction is endothermic in nature, </span>energy if product is more than that of reactant. Hence, option 2 i.e. X = ΔH is correct.
3) Activation energy is energy difference between Reactant (A) and transition state (B). However, as per option C, activation energy (A.E.) is energy difference between product (C) and transition state (B), which is incorrect.
A positive solid sphere with electrons dispersed.
<span>Answer: option (4) the same magnitude and the opposite sign.
</span>
Justification:
<span /><span /><span>
</span><span>1) Electrons are negative particles thar are around the nucleus of the atom (in regions called orbitals).
</span>
<span /><span /><span>
2) Protons are positive particles that are inside the nuclus of the atom.
</span><span />
<span>3) The nucleus of the atom has the same number of protons as electrons are in the orbitals of the atom.
</span>
<span /><span /><span>
4) The atoms are neutral (neither positive nor negative) because there are the same number of electrons and protons and their charge are of the same magnitude but different sign: (+) + (-) = 0: positive + negative = neutral.</span>