The mole ratio of acetic acid to water in 100 g of vinegar is 0.015 : 0.985.
<h3>What is the mole ratio of acetic acid to water in 100 g of vinegar?</h3>
The mole ratio of acetic acid to water in 100 g of vinegar is determined from their percentage composition.
The percentage composition of acetic acid and water in vinegar is 5% acetic acid and 95% water.
In 100 g of vinegar, there are 5 g of acetic acid and 5 g of water.
Moles = mass/molar mass
molar mass of acetic acid = 62 g/mol
molar mass of water = 18 g/mol
moles of vinegar = 5/62 = 0.08
moles of water = 95/18 = 5.28
total moles = 5.36
Mole ratio of vinegar to water = 0.08/5.36 : 5.28/5.36
Mole ratio of vinegar to water = 0.015 : 0.985
In conclusion, the mole ratio is determined from the percentage composition of acetic acid and water in vinegar.
Learn more about mole ratio at: brainly.com/question/19099163
#SPJ1
<span>Group 1 can be characterized as atoms that have 1 electron in their valence shell. This is valuable when dealing with these questions, because the loss or gain of valence electrons is what defines ionic relationships. When group 1 elements form ionic bonds with other atoms, they are extremely likely to lose their valence electron, since the nucleus has a weaker pull on it than, say, a chlorine atom has on its 7 valence electrons. The weaker pull between the nucleus and the valence electron of group 1 elements means that the radius is high, since the electron is more free to move with less pull on it. This also means that the first ionization energy is low, since it takes relatively little energy for that electron to be pulled away to another atom.</span>
Answer: i think its protons and electrons but it also might just be atoms because protons and electrons make atoms when there are also neutrons
Explanation:
Answer:
0.2
Explanation:
Given parameters:
Mass of helium = 0.628g
Mass of neon = 11.491g
Mass of argon = 7.613g
Unknown:
Mole fraction of neon = ?
Solution:
The mole fraction of an element is the number of moles of that element to the total number of moles in the gas mixture.
We need to calculate the number of moles of each element first;
Number of moles = 
Molar mass of Helium = 4g/mol
Molar mass of Neon = 20g/mol
Molar mass of Argon = 40g/mol
Number of moles of He =
= 0.16moles
Number of moles of Ne =
= 0.58moles
Number of moles of Ar =
= 0.19moles
Total number of moles = 0.16moles + 0.58moles + 0.19moles = 0.93moles
Mole fraction Neon =
= 0.2
<span>The molecular formula that describes the problem is
2CH3COOH (aq) + Ca(OH)2 (s) ---> Ca(CH3COO)2 (aq) + 2H2O (l)
The net equation is written as follows:
2CH3COOH- (aq) + 2H+ (aq) + Ca(OH)2 (s) ---> Ca2+ (aq) + 2 CH3COO- (aq) + 2H2O (l)
canceling out spectator ions
2H+ (aq) + Ca(OH)2 (s) ---> Ca2+ (aq) + 2 H2O (l)</span>