Answer:
Change in entropy S = 0.061
Second law of thermodynamics is satisfied since there is an increase in entropy
Explanation:
Heat Q = 300 kW
T2 = 24°C = 297 K
T1 = 7°C = 280 K
Change in entropy =
S = Q(1/T1 - 1/T2)
= 300(1/280 - 1/297) = 0.061
There is a positive increase in entropy so the second law is satisfied.
Answer:
(a) dynamic viscosity = 
(b) kinematic viscosity = 
Explanation:
We have given temperature T = 288.15 K
Density 
According to Sutherland's Formula dynamic viscosity is given by
, here
μ = dynamic viscosity in (Pa·s) at input temperature T,
= reference viscosity in(Pa·s) at reference temperature T0,
T = input temperature in kelvin,
= reference temperature in kelvin,
C = Sutherland's constant for the gaseous material in question here C =120

= 291.15
when T = 288.15 K
For kinematic viscosity :


Answer:
sum2 = 0
counter = 0
lst = [65, 78, 21, 33]
while counter < len(lst):
sum2 = sum2 + lst[counter]
counter += 1
Explanation:
The counter variable is initialized to control the while loop and access the numbers in <em>lst</em>
While there are numbers in the <em>lst</em>, loop through <em>lst</em>
Add the numbers in <em>lst</em> to the sum2
Increment <em>counter</em> by 1 after each iteration
Answer:
Free convection:
When heat transfer occurs due to density difference between fluid then this type of heat transfer is know as free convection.The velocity of fluid is zero or we can say that fluid is not moving.
Force convection:
When heat transfer occurs due to some external force then this type of heat transfer is know as force convection.The velocity of fluid is not zero or we can say that fluid is moving in force convection.
Heat transfer coefficient of force convection is high as compare to the natural convection.That is why heat force convection reach a steady-state faster than an object subjected to free-convection.
We know that convective heat transfer given as
q = h A ΔT
h=Heat transfer coefficient
A= Surface area
ΔT = Temperature difference