Needed to be pointed out that mechanical advantage is when the distance traveled is traded for force applied
from the following options, the one that is considered a mechanical advantage is : C. a longer lever helps lift more weight
hope this helps
(a) The equation for the work done in stretching the spring from x1 to x2 is ¹/₂K₂Δx².
(b) The work done, in stretching the spring from x1 to x2 is 11.25 J.
(c) The work, necessary to stretch the spring from x = 0 to x3 is 64.28 J.
<h3>
Work done in the spring</h3>
The work done in stretching the spring is calculated as follows;
W = ¹/₂kx²
W(1 to 2) = ¹/₂K₂Δx²
W(1 to 2) = ¹/₂(250)(0.65 - 0.35)²
W(1 to 2) = 11.25 J
W(0 to 3) = ¹/₂k₁x₁² + ¹/₂k₂x₂² + ¹/₂F₃x₃
W(0 to 3) = ¹/₂(660)(0.35)² + ¹/₂(250)(0.65 - 0.35)² + ¹/₂(105)(0.89 - 0.65)
W(0 to 3) = 64.28 J
Learn more about work done here: brainly.com/question/25573309
#SPJ1
Answer:

Explanation:
When unpolarized light passes through the first polarizer, the intensity of the light is reduced by a factor 1/2, so
(1)
where I_0 is the intensity of the initial unpolarized light, while I_1 is the intensity of the polarized light coming out from the first filter. Light that comes out from the first polarizer is also polarized, in the same direction as the axis of the first polarizer.
When the (now polarized) light hits the second polarizer, whose axis of polarization is rotated by an angle
with respect to the first one, the intensity of the light coming out is
(2)
If we combine (1) and (2) together,
(3)
We want the final intensity to be 1/10 the initial intensity, so

So we can rewrite (3) as

From which we find


