The answer is methamphetamine
Ans) A) Centripetal force will be doubled.
See centripetal force F = mv^2/r
That means centripetal force is directly proportional to the mass of the particle
So, if we double the mass, centripetal force will be increased by twofolds.
So, option A) is correct.
Now, looking at the other options,
B) says centripetal force is unaltered which is incorrect as centripetal force has been altered and increased twofold.
Option C) and D) reduces centripetal force which are also not possible here.
So, only Option A) is correct
1) 4min = 4*60 sec = 240 sec
2) Distance = speed times time = 3 * 240 = 720 m
Answer:
The dog ran a total distance of 45m but he is only 5m away from the starting line
Explanation: When you add 25 to 20 you get 45 for the total distance and if he ran back in the same direction then you would subtract 20 from 25 and get 5m
Answer: hope it helps you...❤❤❤❤
Explanation: If your values have dimensions like time, length, temperature, etc, then if the dimensions are not the same then the values are not the same. So a “dimensionally wrong equation” is always false and cannot represent a correct physical relation.
No, not necessarily.
For instance, Newton’s 2nd law is F=p˙ , or the sum of the applied forces on a body is equal to its time rate of change of its momentum. This is dimensionally correct, and a correct physical relation. It’s fine.
But take a look at this (incorrect) equation for the force of gravity:
F=−G(m+M)Mm√|r|3r
It has all the nice properties you’d expect: It’s dimensionally correct (assuming the standard traditional value for G ), it’s attractive, it’s symmetric in the masses, it’s inverse-square, etc. But it doesn’t correspond to a real, physical force.
It’s a counter-example to the claim that a dimensionally correct equation is necessarily a correct physical relation.
A simpler counter example is 1=2 . It is stating the equality of two dimensionless numbers. It is trivially dimensionally correct. But it is false.