If the diatomic molecule consists of atoms from two different elements, then it is aheteronuclear diatomic molecule. There are seven elements that naturally occur as homonucleardiatomic molecules in their gaseous states: hydrogen,nitrogen, oxygen, fluorine,chlorine, bromine, and iodine
This happens because ice is made up of water, and when that water freezes, it never goes back to land, thus there being less water on the coastline. But when the ice starts to melt, the water will even out quickly, and the water will go to the coastline, causing the tide to rise. Mark brainliest, please.
Answer:
The two would end up repelling each other very strongly and more energy would ultimately be required to keep the metal-ligand system in place
Explanation:
A complex is made up a central metal atom or ion and ligands. Ligands are lewis bases and they possess lone pairs of electrons. A complex is formed when electrons are donated from ligand species to metals.
However, if the ligand has a negative charge at a particular location and we try to put electrons from the metal near the electrons from the ligand, the two would end up repelling each other very strongly and more energy would ultimately be required to keep the metal-ligand system in place.
Given reaction represents dissociation of bromine gas to form bromine atoms
Br2(g) ↔ 2Br(g)
The enthalpy of the above reaction is given as:
ΔH = ∑n(products)Δ
- ∑n(reactants)Δ
where n = number of moles
Δ
= enthalpy of formation
ΔH = [2*ΔH(Br(g)) - ΔH(Br2(g))] = 2*111.9 - 30.9 = 192.9 kJ/mol
Thus, enthalpy of dissociation is the bond energy of Br-Br = 192.9 kJ/mol
Moles of NH₃ : = 7.059
<h3>Further explanation</h3>
Given
120 g NH₃
Required
moles NH₃
Solution
The mole is the number of particles contained in a substance
<em>1 mol = 6.02.10²³
</em>
Moles can also be determined from the amount of substance mass and its molar mass
Mol = mass : Molar mass
So for 120 g (molar mass of NH₃ = 17 g/mol) :
= 120 g : 17 g/mol
= 7.059