Answer:
![[F]=[MLT^{-2}]](https://tex.z-dn.net/?f=%5BF%5D%3D%5BMLT%5E%7B-2%7D%5D)
Explanation:
Newton’s second law states that the acceleration a of an object is proportional to the force F acting on it is inversely proportional to its mass m. The mathematical expression for the second law of motion is given by :
F = m × a
F is the applied force
m is the mass of the object
a is the acceleration due to gravity
We need to find the dimensions of force. The dimension of force m and a are as follows :
![[m]=[M]](https://tex.z-dn.net/?f=%5Bm%5D%3D%5BM%5D)
![[a]=[LT^{-2}]](https://tex.z-dn.net/?f=%5Ba%5D%3D%5BLT%5E%7B-2%7D%5D)
So, the dimension of force F is,
. Hence, this is the required solution.
Answer:
A) 5.2 x 10³ N
B) 8.8 x 10³ N
Explanation:
Part A)
= weight of the craft in downward direction = tension force in the cable when stationary = 7000 N
= Tension force in upward direction
= Drag force in upward direction = 1800 N
Force equation for the motion of craft is given as
-
-
= 0
7000 - 1800 -
= 0
= 5200 N
= 5.2 x 10³ N
Part B)
= weight of the craft in downward direction = tension force in the cable when stationary = 7000 N
= Tension force in upward direction
= Drag force in downward direction = 1800 N
Force equation for the motion of craft is given as
-
-
= 0
- 7000 - 1800 = 0
= 8800 N
= 8.8 x 10³ N
The force on a charged particle in a magnetic field is given by
the speed of the charged particle = 10842 m/s.
Explanation:
F= q V B sinθ
F=force=3.5 x 10⁻²N
q= charge= 8.4 x 10⁻⁴ C
B= magnetic field= 6.7 x 10⁻³ T
θ=35⁰
Thus the velocity is given by V=
V=(3.5 x 10⁻²)/[(8.4 x 10⁻⁴)(6.7 x 10⁻³)(sin35)]
V=10842 m/s
Answer:
a. Wavelength = λ = 20 cm
b. Next distance of maximum intensity will be 40 cm
Explanation:
a. The distance between the two speakers is 20cm. SInce the intensity is maximum which refers that we have constructive interference and the phase difference must be an even multiple of π and equivalent path difference is nλ.
Now when distance increases upto 30 cm between the speakers, the sound intensity becomes zero which means that there is destructive interference and equivalent path is now increased from nλ to nλ + λ/2.
This we get the equation:
(nλ + λ/2) - nλ = 30-20
λ/2 = 10
λ = 20 cm
b. at what distance, sound intensity will be maximum again.
For next point calculation for maximum sound intensity, the path difference must be increased (n+1) λ. The distance must increase by λ/2 from the point of zero intensity.
= 30 + λ/2
= 30 + 20/2
=30+10
=40 cm
Answer:
<em>The statement is true .</em>
Explanation:
<em>I hope this helps.</em>