Answer:
No, some energy will be dissipated energy due to work of air resistance.
Answer:
c. 12,500
Explanation:
Original number of atoms = 100,000 atoms
Half- life = 10min
Unknown:
The number of atoms that will remain after 10min = ?
Solution:
The half - life is the time taken for half of a radioactive substance to decay by half.
Time taken Number of atom half life
10min 100000 _
20min 50000 1
30min 25000 2
40min 12500 3
I think it is B as 168/20
There are two ways to solve this problem. First we write the given.
Given: Force F = 400 N; Height h = 0.5 m; Time t = 2 s
Formula: P = W/t; but Work W = Force x distance or W = f x d
Weight is also a Force, therefore: W = mg, solve for Mass m = ?
m = w/g m = 400 N/9.8 m/s² m = 40.82 Kg
P = W/t = F x d/t = mgh/t P = (40.82 Kg)(9.8 m/s²)/2 s
P = 100 J/s or 100 Watts
Answer: 0.999959 c
Explanation:
According to the special relativity theory, time is measured differently by two observers moving one relative another, according to the Lorentz Transform Equation, as follows:
t = t’ / t=t^'/√(1-(v)2/c2 )
where t= time for the moving observer (relative to the spacecraft, fixed on Earth) = 110 years.
t’= time for the observer at rest respect from spacecraft = 1 year
v= spacecraft constant speed
c= speed of light
Solving for v, with a six decimals precision as a multiple of c, we get:
v = 0.999959 c