Answer:
* most of the emission would be in the infrared part, the visible radiation would be very small.
*total intensity of the semition decreases that the intensity depends on the fourth power of the temperature
Explanation:
The radiation emitted by the Sun is approximately the radiation of a black body, if the Sun were to cool, the maximum emission wavelength changes
λ T = 2,898 10⁻³
λ = 2,898 10⁻³ / T
if the temperature decreases the maximum wavelength the greater values are moved, that is to say towards the infrared. Therefore the emission curve also moves, in this case most of the emission would be in the infrared part, the visible radiation would be very small.
Furthermore, the total intensity of the semition decreases that the intensity depends on the fourth power of the temperature according to Stefan's law
P = σ A eT⁴
Answer:
Woke done, W = 4156.92 Joules
Explanation:
The work done by the force can be calculated as :
is the angle between force and the displacement
It is assumed to find the work done for the given parameters i.e.
Force, F = 30 N
Distance travelled, s = 160 m
Angle between force and displacement,
Work done is given by :
W = 4156.92 Joules
So, the work done by the object is 4156.92 Joules. Hence, this is the required solution.
Answer:
E = 124.7 N / C
Explanation:
Let's analyze the exercise: the microwave creates an electromagnetic wave of frequency F = 2.45 GHz, this wave is introduced into the microwave cavity and is reflected on the metal walls, which is why one or more standing waves are formed.
The electric field of the standing wave is
I = E²
E =√I
where I is the intensity of the radiation.
What is it
I = P / A
where P is the effective emission power, almost all the power of the microwave and A is the area of the cavity, in the most used microwaves
P = 700 W and the area is A = 25 x 18 cm² = 0.045 m²
I = 700 / 0.045
I = 15555.56 W/m²
let's calculate the electric field
E = √15555.56
E = 124.7 N / C
6: velocity i hpe this is what your looking for