Answer:

Explanation:
Hello,
In this case, we find the following states:
a. Liquid salt water at 28.0 °C.
b. Liquid salt water at 102.5 °C.
c. Vapor salt water at 102.5 °C.
The first process (1) is to heat the liquid water from 28.0 °C to 102.5 °C and the second one (2) to vaporize the liquid salt water. In such a way, each process has an amount of energy that when added, yields the total energy for the process as shown below:

Best regards.
A mole of any gas occupied 22.4 L at STP. So, the number of moles of nitrogen gas at STP in 846 L would be 846/22.4 = 37.8 moles of nitrogen gas.
Alternatively, you can go the long route and use the ideal gas law to solve for the number of moles of nitrogen given STP conditions (273 K and 1.00 atm). From PV = nRT, we can get n = PV/RT. Plugging in our values, and using 0.08206 L•atm/K•mol as our gas constant, R, we get n = (1.00)(846)/(0.08206)(273) = 37.8 moles, which confirms our answer.
Ionic bonds are formed when one of the two atoms that are reacting has excess electrons and transfer the electrons to the atom that is deficient in electrons. During the formation of the ionic bond, one of the reacting atoms will donate electrons and form positive ion.
Answer:
Ionic compounds
Explanation:
Molecular formula consists of chemical symbols for constituent elements followed by the numeric subscripts describing number of the atoms of each element present in one molecule of the compound.
On the other hand, ionic compounds do not exist in the form of molecules. They are in the form of crystal lattice in the solid state which contains many ions each of cation and anion.
<u>Thus, a ionic compounds are unable to write a molecular formula. Empirical formulas to used to represent them.</u>
Answer:
FALSE.
Explanation:
The right answer is false. There are three different groups of phylum for worms.
Hope this helped!