There would be about 1.67 x 10^25 oxygen atoms and about 3.34 x 10^25 hydrogen atoms.
Answer: Heat of reaction ∆H = -13.43kJ
Explanation:
The number of moles of NaOH = the number of moles of HCL = N
N = concentration × volume= CV = 0.5M × 500mL/1000ml/L
N= 0.5 × 0.5= 0.25mol
Since the Molar enthalpy is given by Hm = -53.72kJ/mol
Heat of reaction ∆H = N×Hm
∆H= 0.25mol × -53.72kJ/mol = -13.43kJ
Heat of reaction ∆H = -13.43kJ
"The boron-nitrogen interaction in the studied molecules shows some similarities with the N→B bond in the H3N-BH3 molecule, formally understood as covalent-dative. ... The results show that all the studied BN bonds are triple, since three two-center orbitals have been obtained."
"Formation of a dative bond or coordinate bond between ammonia and boron trifluoride. When the nitrogen donates a pair of electrons to share with the boron, the boron gains an octet. ... In addition, a pair of non-bonding electrons becomes bonding; they are delocalized over two atoms and become lower in energy."
Answer:
One mole of a substance is equal to 6.022 × 10²³ units of that substance (such as atoms, molecules, or ions). The number 6.022 × 10²³ is known as Avogadro's number or Avogadro's constant. The concept of the mole can be used to convert between mass and number of particles