Answer:
8.3 kJ
Explanation:
In this problem we have to consider that both water and the calorimeter absorb the heat of combustion, so we will calculate them:
q for water:
q H₂O = m x c x ΔT where m: mass of water = 944 mL x 1 g/mL = 944 g
c: specific heat of water = 4.186 J/gºC
ΔT : change in temperature = 2.06 ºC
so solving for q :
q H₂O = 944 g x 4.186 J/gºC x 2.06 ºC = 8,140 J
For calorimeter
q calorimeter = C x ΔT where C: heat capacity of calorimeter = 69.6 ºC
ΔT : change in temperature = 2.06 ºC
q calorimeter = 69.60J x 2.06 ºC = 143.4 J
Total heat released = 8,140 J + 143.4 J = 8,2836 J
Converting into kilojoules by dividing by 1000 we will have answered the question:
8,2836 J x 1 kJ/J = 8.3 kJ
Answer: the molecular formula is C10H20O
Explanation:Please see attachment for explanation
I’m pretty sure the answer is C
The atomic mass would be 28.08535 amu. Multiply 27.9769 by .92297 = 25.803. Multiply 28.9765 by .046832 to get 1.357. Multiply 29.9738 by .03872 to get .925351136. Add 25.803 + 1.357 + .03872 to get 28.08535 amu
Sb has the largest atomic radius by 206