Here we have to get the height of the column in meter, filled with liquid benzene which exerting pressure of 0.790 atm.
The height of the column will be 0.928 m.
We know the relation between pressure and height of a liquid placed in a column is: pressure (P) = Height (h) × density of the liquid (ρ) × gravitational constant (g).
Here the pressure (P) is 0.790 atm,
or [0.790 × (1.013 × 10⁶)] dyne/cm². [As 1 atm is equivalent to 1.013 × 10⁶ dyne/cm²]
Or, 8.002ₓ10⁵ dyne/cm².
density of benzene is given 0.879 g/cm³.
And gravitational constant (g) is 980 cm/sec².
On plugging the values we get:
8.002×10⁵ = h × 0.879 × 980
Or, h = 928.931 cm
Or, h = 9.28 m (As 1 m = 100 cm)
Thus the height will be 9.28 m.
Hypothesis
Therefore the last step in the scientific method is proposing a hypothesis or obtaining a conclusion
Answer:
0.974 atm; 740 mm Hg; 98.7 kPa; 0.987 bar
Answer:
Land breeze is the wind that blows cool air from land towards sea at night.
Explanation:
Land breeze is a type of wind which is cool and blows towards sea. It occurs due to the difference in the temperature of water and land. At night, the lands cool quickly due to the removal of heat from it. So the air that is present on land is cool down and this air moves towards sea. So this breez is called land breeze because it moves from land.
We are given with
Cobalt phosphate - CoPO4
We are asked for the net ionic equation for the phosphate dissolving in H3O+
The net ionic equation is
CoPO4 (s) + H3O+ (aq) -----> HPO42- (aq) + Co3+ (aq) + H2O *(l)