1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nimfa-mama [501]
2 years ago
11

The fall of a body on the earth surface cannot be a complete free fall ? why​

Physics
1 answer:
anzhelika [568]2 years ago
8 0
It can never be in a total free fall due to air resistance and terminal velocity due to mass
You might be interested in
if a ball with an original velocity of 0 is dropped from a tall structure and takes 7 Seconds to hit the ground what velocity do
krok68 [10]

a_y=\dfrac{v_y-v_{0y}}t\implies-9.81\,\dfrac{\mathrm m}{\mathrm s^2}=\dfrac{v_y-0}{7\,\mathrm s}\implies v_y=-68.7\,\dfrac{\mathrm m}{\mathrm s}

5 0
3 years ago
Froghopper insects have a typical mass of around 11.3 mg and can jump to a height of 58.8 cm. The takeoff velocity is achieved a
allochka39001 [22]

Answer:

2874.33 m/s²

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

g = Acceleration due to gravity = 9.81 m/s²

v^2-u^2=2as\\\Rightarrow a=\frac{v^2-u^2}{2s}\\\Rightarrow a=\frac{v^2-0^2}{2\times h}\\\Rightarrow v^2=2ah\ m/s

Now H-h = 0.588 - 0.002 = 0.586 m

The final velocity will be the initial velocity

v^2-u^2=2as\\\Rightarrow 0^2-u^2=2gs\\\Rightarrow -2ah=2\times g(H-h)\\\Rightarrow -2a0.002=2\times g0.586\\\Rightarrow a=-\frac{0.586\times -9.81}{0.002}\\\Rightarrow a=2874.33\ m/s^2

Acceleration of the frog is 2874.33 m/s²

6 0
3 years ago
Because the top mirror is not perfectly reflective (it reflects 90% of the photons, allowing 10% of them to go through), the pow
allsm [11]

This question is incomplete, the complete question;

you make an interferometer using 50-50 beam splitter and two mirrors, one being a perfect mirror and one which does not reflect all light. The wavelength of the 9 mW incident laser is 400 nm.

Because the top mirror is not perfectly reflective (it reflects 90% of the photons, allowing 10% of them to go through), the power measured at the detector when only the vertical arm is blocked is 2.25 mW, while the power measured at the detector when only the horizontal arm is blocked is only 2.025 mW. Assume initially the intensity is at its maximum. How much would we need to translate the perfect mirror to the right to get a minimum intensity at detector, and what is that minimum intensity

Options;

a) 200 nm; 0.9 mW

b) 100 nm, 0.0059 mW

c) 200 nm; 0 mW

d) 100 nm; 0.9 mW

e) 200 nm; 0.0059 mW

Answer:

the amount we need to translate the perfect mirror to the right to get a minimum intensity at detector  and the minimum intensity are;

100 nm; 0.0059 mW

Option b) 100 nm, 0.0059 mW is the correct answer

Explanation:

Given that the instrument here is an interferometer.

Maximum intensity is obtained when the two waves are exactly in phase.

that is the peaks (crusts and troughs) and nodes (zero value points) of the two waves will be at the exact same point when the wave falls on the detector.

The phase factor of this point is taken as ∅ = 0

Now, to get a minimum point, the phase difference between the two waves should be should be ∅ = π

This corresponds to a path difference between the two waves as half of the wavelength. λ/2

The light gets reflected from the mirror.

Hence, when we move the mirror by a length l, the extra/less path the light has to travel is 2l (light is going and coming back)

hence, to get a path difference of λ/2 the mirror should move half of this distance only

so, the mirror should move;

l = λ/4

here, wavelength is 400nm

the length moved by the mirror = 400/4 = 100 nm

The intensity is given by the equation;

l = l1 + l2 + 2√l1l2cos(∅)

where

l1 = 2.25 mW

l2 = 2.025 mW

∅ = π

so we substitute

l = 2.25 + 2.025 - 2√(2.25 × 2.025)

l = 4.275 - 4.26907

l = 0.0059

Therefore; the amount we need to translate the perfect mirror to the right to get a minimum intensity at detector  and the minimum intensity are;

100 nm; 0.0059 mW

Option b) 100 nm, 0.0059 mW is the correct answer  

5 0
2 years ago
A man does 500 J of work pushing a car a distance of 2 m. How much force does he apply? Assume there is no friction.
Dmitry [639]

The correct answer is A. 250N

Work is a product of force and distance.

That is, work done=force×distance

Therefore substituting for the values in the question:

500J=force×2m

force= 500Nm/2m=250N

another unit for work done is Nm as force as the SI unit of force is newtons and distance in meters

6 0
3 years ago
Read 2 more answers
The tendency of an object to resist a change in its motion is called
Nikolay [14]

Answer:

inertia

Explanation:

4 0
2 years ago
Other questions:
  • Vivian went on a bicycle trip through Germany with her family. One afternoon, she rode her bicycle along a long flat road at a c
    5·1 answer
  • A 900-kg giraffe runs across a field at a rate of 50 km/hr. What is the magnitude of its momentum? 18 km/hr
    15·2 answers
  • The 2004 landings of the Mars rovers Spirit and Opportunity involved many stages, resulting in each probe having zero vertical v
    15·1 answer
  • A projectile is launched horizontally at off a 20m high position. It goes 60m
    12·1 answer
  • In the southern hemisphere the summer solstice occurs when the sun is
    5·1 answer
  • How do we know what is inside of Earth ?
    9·1 answer
  • When does the moon lie between earth and sun
    12·2 answers
  • Over time Pangaea broke apart to form other continents.
    9·1 answer
  • It's a frightening idea, but what would be the sound intensity level of 100 physics professors talking simultaneously
    15·1 answer
  • Type the correct answer in the box. use numerals instead of words. anne has a sample of a substance. its volume is 20 cm3, and i
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!