Answer:
The specific heat capacity of the unknown metal is 0.223 
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
There is a direct proportional relationship between heat and temperature. The constant of proportionality depends on the substance that constitutes the body as on its mass, and is the product of the specific heat by the mass of the body. So, the equation that allows calculating heat exchanges is:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation.
In this case, you know:
- Q= 418.6 J
- c= ?
- m= 75 g
- ΔT= 25 C
Replacing:
418.6 J= c* 75 g* 25 C
Solving:

c= 0.223 
<u><em>The specific heat capacity of the unknown metal is 0.223 </em></u>
<u><em></em></u>
<u><em>
</em></u>
<u><em></em></u>
Answer:
an ion is an element that has different numbers of protons and electrons
Explanation:
An ion is positive when it has more protons than electrons and negative when it has more electrons than ions.
(Hope this was helpful!) :)
It should be 3.36 g / min but i m not sure
Answer:
See explanation
Explanation:
In this case, we have to remember that if we want to remove water from the reaction vessel we have to heat the vessel. So, we can convert the liquid water into <u>gas water</u> and we can remove it from the vessel. In this case, the products of dehydration for both molecules are <u>(E)-4-methylpent-2-ene</u> and <u>cyclohexene</u> with boiling points of <u>59.2 ºC</u> and <u>89 ºC</u> respectively. The boiling point of water is <u>100 ºC</u>, therefore if we heat the vessel the products and water would leave the system, and the products would be lost.
See figure 1
I hope it helps!
Answer: In metallic bonds, the mobile electrons surrounding the positive ions are called <u><em>dipole</em></u>.