Answer:
33.2 m
Explanation:
For the first object:
y₀ = 81.5 m
v₀ = 0 m/s
a = -9.8 m/s²
t₀ = 0 s
y = y₀ + v₀ t + ½ at²
y = 81.5 − 4.9t²
For the second object:
y₀ = 0 m
v₀ = 40.0 m/s
a = -9.8 m/s²
t₀ = 2.20 s
y = y₀ + v₀ t + ½ at²
y = 40(t−2.2) − 4.9(t−2.2)²
When they meet:
81.5 − 4.9t² = 40(t−2.2) − 4.9(t−2.2)²
81.5 − 4.9t² = 40t − 88 − 4.9 (t² − 4.4t + 4.84)
81.5 − 4.9t² = 40t − 88 − 4.9t² + 21.56t − 23.716
81.5 = 61.56t − 111.716
193.216 = 61.56t
t = 3.139
The position at that time is:
y = 81.5 − 4.9(3.139)²
y = 33.2
Answer:
5.38 m/s^2
Explanation:
NET force causing the object to accelerate = 50 -10 = 40 N
Mass of the object = 73 N / 9.81 m/s^2 = 7.44 kg
F = ma
40 = 7.44 * a a = 5.38 m/s^2
Answer:
P = 4000 [Pa]
Explanation:
Pressure is defined as the relationship between Force and the area where the body rests.
The support area is equal to:
But we must convert from square centimeters to square meters.
And the pressure is:
Answer:
Explanation:
This question pertains to resonance in air column. It is the case of closed air column in which fundamental note is formed at a length which is as follows
l = λ / 4 where l is length of tube and λ is wave length.
here l = .26 m
λ = .26 x 4 = 1.04 m
frequency of sound = 330 Hz
velocity of sound = frequency x wave length
= 330 x 1.04
= 343.2 m /s
b )
Next overtone will be produced at 3 times the length
so next length of air column = 3 x 26
= 78 cm
c )
If frequency of sound = 256 Hz
wavelength = velocity / frequency
= 343.2 / 256
= 1.34 m
= 134 cm
length of air column for resonance
= wavelength / 4
134/4
= 33.5 cm